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Summary 
 

Over the past 50 years, variances have been developed for characterizing the instabilities in precision clocks and 
oscillators. These instabilities are often modeled by non-stationary processes, and these variances have been shown to be 
well-behaved and to be unbiased, efficient descriptors of these processes. The time-domain and frequency-domain 
relationships are shown along with the strengths and weaknesses of these characterization metrics. These variances are also 
shown to be useful elsewhere, as in navigation. 
 
Introduction 
 

Nature gives us many non-stationary and chaotic processes. If we can properly characterize these processes, 
then we can use optimal procedures for estimation, smoothing, and prediction. During the 1960s through the 
1980s, the Allan variance, the modified Allan variance, and the Time variance were developed to this end for the 
timing and the telecommunication communities. Since that time, useful refining techniques have been 
developed. This activity has been a learning endeavor, and the strengths and weaknesses of these variances will 
be enumerated herein. The applicability of these variances has been recognized in other areas of metrology as 
well, because the above processes are ubiquitous. Knowing the strengths and weaknesses is important not only in 
time and frequency but so that these variances may be properly utilized in other application areas, such as 
navigation. 

Prior to the 1960s and before atomic clocks were commercially available, quartz-crystal oscillators were 
used for timekeeping. The greatest long-term-frequency instabilities in these oscillators were their frequency 
drifts. Also, it was commonly recognized that their long-term performance seemed to be modeled by what is 
commonly called flicker-noise frequency modulation (FM), which model is a non-stationary process, because 
this noise has a power-spectral-density proportional to 1/f, where f is the Fourier frequency. In integrating this 
kind of noise to determine the classical variance, one observes that the integral is non-convergent. 

In 1964, James A. Barnes developed a generalized auto-correlation function that was well behaved for 
flicker noise. I was fortunate to have him for my mentor at the National Bureau of Standards (NBS) in Boulder, 
Colorado. That same year, the IEEE and NASA held a special conference at NASA, Goddard, in Beltsville, 
Maryland, addressing the problem of how to characterize clocks with these non-stationary behaviors. Jim and I 
presented a paper at this conference, and it was well received. His work was the basis for his Ph.D. thesis, and it 
also gave me critical information that I needed for my master’s thesis. We both finished our theses the following 
year. In addition to Jim’s work, I relied heavily on the book that Jim had shown me by Sir James Michael 
Lighthill, Fourier Analysis and Generalized Functions. Along with Jim’s work, this book was invaluable. 

In my thesis I studied the effects on the classical variance as a function of how long the frequency was 
averaged (the averaging time, τ), how many samples were included in the variance, N, how much dead-time 
there was between frequency averages, T-τ (in those days it took time for a frequency counter to reset after a 
frequency had been measured over some interval τ; so T was the time between the beginning of one 
measurement to the beginning of the next), and how it depended on the measurement system bandwidth, fh. We 
developed a set of spectral-density, power-law noise models that covered the characterization of the different 
kinds of instabilities we were observing in clocks – resulting from the noise of the measurement systems, the 
clocks, and from environmental influences. Since then, we have observed that these noise models are much more 
general than we’d originally thought and have a broad application in metrology. 
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Both Jim’s and my theses were published, along with several other papers from the 1964 IEEE/NASA 
conference, in a February 1966 special issue of the Proceedings of the IEEE on “Frequency Stability.” 
 
Modeling nature with power-law noise processes 
 

The pioneering work of Mandelbrot and Voss introducing “fractals” shows the importance of these self-
similar and non-stationary processes in modeling nature. Flicker noise is in that class. We found that five 
different kinds of noise were useful in modeling clocks. Many of these may be used as good models in other 
natural processes – including errors in navigation systems. 

Modeling the noise processes in nature is revealing. The better we can model nature, the better we can use 
optimization to know more about the underlying processes masked by nature’s noise. 

We have been able to use the variances I will share in this paper in characterizing and modeling many 
different processes in nature. As I look back over the 50 years we have been doing this work, it has been 
rewarding to see the insights into nature that have been gained. I will show some exciting examples of these 
insights later in this paper. 

For clocks, if the free-running frequency of a clock is ν(t) and we denote its nominal frequency as νo, then 
we may write the normalized frequency deviation of a clock as y(t) = (ν(t) - νo) / νo. The time-deviation of a 
clock may be written as x(t), which is the integral of y(t). Studying the time-domain and frequency-domain 
characteristics of x(t) and y(t) opens the opportunity to model the clock’s behavior and then to perform optimum 
estimation, smoothing, and prediction of its “true” behavior in the midst of noise – even when the noise is non-
stationary. 

We symbolize the frequency-domain measures using spectral densities – denoted by Sy(f) and Sx(f). In the 
time domain we have found useful the Allan variance (AVAR), the modified Allan variance (MVAR), and the 
Time variance (TVAR). Other variances have been found useful as well. Often shown are the square-root of 
these variances: 

 
Figure 1. Common nomenclature for the variances and their square-roots as used at the National Bureau of Standards 
(now National Institute of Standards and Technology) in the United States of America as well as in international 
scientific literature and as IEEE standards. 
 

The power-law spectral densities may be represented as Sy(f) ~ f α and Sx(f) ~ f β, and because x is the 
integral of y, one may show that α = β + 2. The models for the random variations for clocks, their measurement 
systems, and for their distribution systems that work well have values of alpha as follows: α = -2, -1, 0, +1, and 
+2. These models seem to reasonably fit the random frequency variations observed. These models seem to fit in 
many other areas of metrology as well. Flicker noise has been shown to be ubiquitous in nature. In the case of 
time and frequency, we have observed both flicker-noise FM (α = -1) and flicker-noise PM (β = -1). 

Figure 2 demonstrates how these models apply for different kinds of clocks. Typically, the noise model 
changes from short-term averaging times to long-term – almost always moving toward more negative values of 
α. Included in the following chart is the value α = -3, as this is the long-term model for earth-rotation noise for 
Fourier frequencies below one cycle per year after subtracting all the systematic terms from the data. 

 

 

Figure 2 Matrix showing the usefulness of power-law, spectral-density models for Earth = noise in the earth’s rotation 
rate (after removing all systematics), in Qu = quartz-crystal oscillators, H-m = hydrogen masers, Cs = cesium-beam and 
cesium-fountain frequency standards, Rb = rubidium-gas-cell frequency standards, and in the new and most stable atomic 
clocks using frequencies in the optical region of the electromagnetic spectrum. 
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As one can see in the next figure, the visual appearance of these power-law spectra are very different, and 
the eye, in some sense, can be a good spectrum analyzer. One of the many reasons why in data analysis one 
should always visually look at the data is that the brain is an amazing and miraculous processor. 

 
Figure 3. Illustration of visual difference for different power-law, spectral-density models. 
 

Using Lighthill’s book, we can transform these spectra to the time domain. In doing so we obtain figure 4. 
 

 
 
Figure 4. We have α as the ordinate and ࣆ as the abscissa, where ࣆ is the exponent on ࣎ showing the time-domain 
dependence, and where AVAR = ߪy

2(࣎) and MVAR = mod. ߪy
2(࣎). We have an elegant Fourier transform relationship in 

the simple equation α = -1 – ࣆ; we jokingly call it the super-fast Fourier transform, because the AVAR can be computed 
very quickly from an equally spaced set of data. 
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Since ~  , by plotting log ߪy(࣎ሻ versus log ࣎, the slope will be 2/ࣆ; hence, we can ascertain both 

the kind of noise as well  as  its  level  from such a plot. This  sigma‐tau plotting  technique has been used 

literally thousands of times to great advantage – giving a quic “super‐fast Fourier transform” of the data. k 

In Figure 4, we notice an ambiguity problem for AVAR at 2- = ࣆ. The simple equation no longer applies, 

and we cannot tell the difference in the time domain between white-noise phase or time modulation (PM) and 

flicker-noise PM. This problem was a significant limitation in clock characterization for the time and frequency 

community for 16 years after AVAR was developed. Even though there was ambiguity in the ࣎ dependence in 

this region, we knew that it could be resolved because there remained a measurement bandwidth sensitivity. 

Since it was inconvenient to modulate the measurement system bandwidth, this approach never became useful. 

But in 1981 we discovered a way to modulate the bandwidth in the software, and this was the breakthrough we 

needed. This gave birth to MVAR, and the concept is illustrated in the following figure. 
One can think of software bandwidth modulation in the following way. There is always a finite 

measurement system bandwidth. We call it the hardware bandwidth, fh. Let ࣎h = 1/fh. Then every time we take a 
phase or time reading from the data, it inherently has a ࣎h sample-time window. If we average n of these 
samples, we have increased the sample-time window using software by n, ࣎s = n࣎h. Let ࣎s = 1/fs, then if we 
increase the number of samples averaged as we increase ࣎, then one can show that we are decreasing the 
software bandwidth by 1/n. We were able to show that by modulating the bandwidth in this way we removed the 
above ambiguity and maintained validity for our simple super-fast Fourier transform equation over all the power-
law noise processes of interest; α = - 1 – ’ࣆ. There is an unknown proportionality constant between the fs shown 
below and the fs in the above equations, but fortunately we don’t need to know it to characterize the data. 

Figure 5 is an illustration of this software bandwidth modulation for n = 4; in principle, n can take on any 
integer value from 1 to N/3. 

 
Figure 5. A pictorial of the software-bandwidth modulation technique used in the modified Allan variance to resolve the 
ambiguity problem at 2- = ࣆ; Hence, this software modulation technique allows us to characterize all of the power-law 
spectral density models from α = -3 to α = +2. This covers the range of useful noise models for most clocks. Illustrated in 
this figure is the case for n = 4; n may take on values from 1 to N/3, where N is the total number of data points in the data 
set with a spacing of ࣎o. 
 
Data length dependent variances are not useful 
 

Going back to 1964, Dr. Barnes had shown that the second and third finite-difference operators on the time 
variations of a clock gave a convergent statistic in the presence of flicker noise FM. This was the basis of his 
PhD thesis in helping to use a quartz-crystal oscillator ensemble calibrated by the National Bureau of Standards 
primary cesium-beam-frequency standard to construct a time scale for generating time for NBS and hence for the 
USA civil sector; the USNO is the official time reference for the USA defense sector. 

I had shown in my master’s thesis the divergence of the classical variance or lack thereof for the above 
power-law noise processes as a function of the number of data points taken. The degree of divergence depends 
upon both the number of data points in the set as well as upon the kind of noise. In other words, the classical 
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variance was data-length dependent for all of the power-law noise models we were using to characterize clocks 
except for classical-white noise FM. Hence, the classical variance was deemed not to be useful in characterizing 
atomic clocks because other than white-noise FM models were needed. This divergence problem seems to exist 
in all areas of metrology as a result of nature’s natural processes and environmental influences on whatever we 
are measuring. 

I used the two-sample variance as a normalizing factor because I knew from Lighthill and from Barnes’ 
work that it was convergent and well behaved for all of the interesting power-law spectral density processes that 
are useful in modeling clocks and measurement systems. The two-sample variance I used may be written as 
follows: 

2 2 2 2
2

1 1
( ) ( ) ( ) ,

2 2y y x     


 

where the brackets   denote the expectation value, or ensemble average   and the “2” in the denominator 
normalizes it to be equal to the classical variance in the case of classical white-noise FM. Don Halford, my 
Section chief at the time, named this the Allan variance, and the name persists. I don’t mind; jokingly, some ask 
if I am at variance with the world? When one takes the square root and it becomes the Allan deviation, I cringed 
a bit, but then as I thought about it, I said to myself, “I am not a deviant!” Deviation is the measure of 
performance – the change in a clock’s rate – the smaller the better. If I can help these be smaller and smaller, that 
is good and will help society, and I am all for that. 

The ratio of the N-sample variance to the Allan variance as a function of N is shown in the figure 6. 
Realizing that the N-sample variance is the classical variance for N samples, one sees why it is not useful for 
characterizing these different kinds of noise, as it is not convergent in many cases and is biased as a function of 
N in all cases except for classical-white noise. One can turn this dependence to an advantage and use it to 
characterize the kind of noise using the B1 bias function: B1(N) = σ2 (N) / σ2

y(τo). 

 
Figure 6. Illustration of the data-length dependence of the classical variance for the different kinds of power-law noise 
processes used in modeling precision oscillators and atomic clocks as a function of the data length. 
 

Following the 1966 IEEE special issue on “Frequency Stability,” the IEEE asked Dr. Barnes to chair a panel 
of experts and to prepare a special paper on “Characterization of Frequency Stability.” That paper was published 
in 1971 in which they recommended the spectral density Sy(f) and the two-sample variance as the recommended 
measures of frequency stability. They also called it the “Allan variance.” This paper is available on the NIST 
Time and Frequency Divisions web site: http://tf.boulder.nist.gov/general/pdf/118.pdf  Dr. Leonard S. Cutler, 
who was one of these experts, was the first to write the equation for the time-domain variances in terms of the 
spectral density, and this is developed in this paper for, equation 23. 
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As a point of interest, many years ago I was asked to write a paper entitled, “Should the Classical Variance 
Be Used as a Basic Measure in Standards Metrology?” http://tf.boulder.nist.gov/general/pdf/776.pdf . I 
researched voltage standards and gage-blocks, and I found flicker-noise behavior in their long-term performance. 
A fundamental statement that came out of that research was that if the bias function B1(N) is not 1 (one) within 
some reasonable confidence limits, then the classical variance is not a good measure. That advice was not 
followed by the BIPM standard’s committee even though it has a solid scientific basis. Traditions seem too 
strong many times even when these traditions are not the best for progress when these flawed traditions continue 
to be followed. 

Note also that the two-sample or Allan variance is without dead-time. In other words, the frequency 

measurements are sequentially adjacent. For example, the ith frequency deviation taken over an averaging time, 

࣎, may be derived from the time deviations as follows: yi = (xi – xi-1)/࣎. This equation gives us the true average 

frequency deviation over that interval; it may not be the optimum estimate of frequency. One notices that if the 

average is taken over the whole data set, then all the intermediate values cancel, and one is left with the true 

average frequency deviation over the data set: yavg = (xN – x0)/N࣎. This is one of the benefits of no-dead-time 

data. Another is that for classical white-noise FM, as has been found to be the fundamental performance 

limitation in most atomic clocks, then  is an optimum-variance estimator of the change of frequency over 

any averaging time, ࣎, and is equal to the classical variance for – the minimum data-spacing variance. 

Dr. Barnes has also shown that  is an unbiased estimator for the level of the power-law noise process 

of interest in modeling atomic clocks and that it is Chi-squared distributed. The value of ࣎ in the software 

analysis can take on values for all ࣎ = n ࣎o for any integer n = 1 to N/2. The confidence of the estimate is best at 

࣎ = ࣎ o decreasing to ࣎ = N/2, where there is only one-degree of freedom for the confidence of the estimate and 

the Chi-squared-distribution function has a most probable value of zero for one degree of freedom. Even though 

it is unbiased, the probability of small values is significant. In a  ࣎ plot, one often observes too-

low of values for  as the value of ࣎ approaches half the data length; then the degrees of freedom are 
too small for a good confidence on the estimate. David A. Howe and his group at NIST have addressed this 

problem and have come up with some elegant solutions by adding degrees of freedom to the long-term data; that 

work is still in progress and is extremely useful. http://tf.boulder.nist.gov/tf-cgi/showpubs.pl  

In other areas of metrology, one needs to pay attention to this dead-time issue if the noise is not white 

(random and uncorrelated). As shown in my thesis, the dead-time has an impact on the resulting variance if the 

noise is not white. The dead-time problem was studied and subsequent papers written. The following link in 

Chapter 8 of Monograph 140 covers this issue for both the N dependence and dead-time with the bias functions 

B1 and B2, respectively: http://tf.boulder.nist.gov/general/pdf/771.pdf  Later, I will show this need not be a 

significant problem in general metrology applications; it seems to be a unique problem in time and frequency. 

 
The time variance 
 

In the later part of the 1980s the telecom industry in the United States came to me and asked if I would help 
them with a metric for characterizing telecommunication networks. I asked Dr. Marc Weiss, who was in my 
group at NIST at the time, to help me with this project. It was a fascinating work, as we analyzed a lot of their 
data to find the best metric. Out of this work we developed the time variance, TVAR. It is defined as follows: 
TVAR = ࣎2 MVAR/3. The “3” in the denominator normalizes it to be equal to the classical variance in the case 
of classical white-noise PM. Like as for AVAR for FM, one can show that for white-noise PM, TVAR is an 
optimum estimator of change in the phase or time residuals in a variance sense.  

The work in the United States caught on and these three variances became international IEEE time-domain 
measurement standards in 1988. Interestingly, in their historic application we see that these three variances had 
three general regions of applicability: 

1. AVAR for characterizing the performance of frequency standards and clocks. 
2. MVAR for characterizing the performance of time and frequency distribution systems. 
3. TVAR for characterizing the timing errors in telecommunication networks. 
Following the development of each of these three variances, many other areas of applicability have arisen. 

Conveniently, TDEV (the square-root of TVAR) has no dead-time issues and has become a standard metric in 
the international telecommunications industry. All three have application capability in many other areas of 
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metrology. Navigation system errors and gyro errors are some examples. If you search Google for “Allan 
variance,” you will find about 50,000 results. 
 
Equations and their transforms 
 
The equations for computing AVAR, MVAR, and TVAR from the time-deviations and for N data points are 
respectively:   

 
2

22
2

1

( 2
( 2 )

N n

y i n
i

i n ix x x
N n

 



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


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 
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1
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6 ( 3 1)

n jN n

x m
j i j

x x
n N n

  

 

 
        

  , 

i are the time deviation data separated by a time interval, ࣎o, and ࣎ = n࣎o. 
For MVAR and TVAR, the computation involves a double sum. One may think that this could cause the 

computation time to increase as N2, but one can employ some computation tricks, such as simple drop-add 
averaging, to make it linear. Otherwise this could be a problem for large data sets. Such tricks have been 
successfully implemented, and the software references cited later include these computation techniques. 

The following equations show how the three time-domain variances may be derived from frequency-domain 
information. One cannot do the reverse – derive the spectral densities from time-domain analysis. When 
possible, it is often very useful to analyze the data in both the frequency and time domains. Below we see the 
frequency-domain view of these variances. 
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Figure 7 a, b, c, and d. Figure 7a shows the three time-domain equations as derived from spectral densities. Figures b, c, 
and d show the effective Fourier windows using the transfer functions of each of these three variances for n = 1, 2, 4, 8, 
16, 32, 64, 128, and 256. 

 
 
Three years ago, I was asked to write a paper on “Conversion of Frequency Stability Measures from the 

Time domain to the Frequency domain, vice-versa and Power-law Spectral Densities.” This paper is available on 
our web site, and has a lot more detail about these conversion processes: 
http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf  
The conversion relationships are shown in the following table for the five noise types: 
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Estimation, smoothing, and prediction 
 

 Estimation and smoothing 
 
Box and Jenkins in their book, Time Series Analysis, using the ARIMA process, do a great work on how to 

estimate and smooth for various kinds of random processes. I will not review their paramount work here. 
There is a simple, powerful and useful statistical theorem that I will use for estimation, smoothing, and 

prediction. It is that the optimum estimate of the mean of a process with a white-noise spectrum is the simple 
mean. As examples, if we have white-noise PM, then the optimum estimate of the phase or the time is the simple 
mean of the independent phase or time residual readings added to the systmatics.  

If we have white-noise FM, then the optimum estimate of the frequency is the simple mean of the 
independent frequency readings, which is equivalent to the last time reading minus the first time reading divided 
by the data length, if there is no dead-time between the frequency measurements. As we have shown before, the 
true verage frequency is given by: yavg = (xN – x0)/N࣎.  a

 
 Prediction 
 
Using the above theorem for optimum prediction, if we take the current time as “t,” and we wish to predict 

ahead an interval , then the optimum time prediction, for a clock having white-noise FM and an average offset 

frequency yavg given by the above equation, is given by: ˆ( ) N avgx t x y     . A simple pictorial for the optimum 
time prediction using this theorem for the five different noise processes is shown in the figure 8; for white-noise 
FM, the yavg is assumed to be zero. 

The even-powered exponents are directly amenable to this theorem, but the flicker-noise (odd exponents) 
are more complicated. However, there is a simple prediction algorithm for flicker FM using what we call the 
second difference predictor. It is very close to optimum and is simple. If you desire to predict ࣎ into the future 
then this prediction can be obtained by the following equation: ˆ( ) 2 ( ) (x t x t x t )      , where t is the current 
time. I have seen this equation used on the stock market, which is often flicker-like in its performance. 

Knowing the stability, , of a clock allows us to calculate its time predictability capability. As an 
approximate rule of thumb, the predictability is given by  

( )y 
( )y  , Using this equation the figure 9 shows the 

time predictability of a variety of timing devices that have been used over human history. 
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Figure 8. A pictorial illustrating optimum prediction 
for the five different power-law noise processes used 
in modeling the time deviations in precision clocks. 
These prediction algorithms have general 
appication. 
 

Figure 9. This chart was made back in 1997. If we were to include 
the ytterbium clock on this graph, it would be represented by a 
࣎+1/2 line crossing through 40 femtoseconds at seven hours; or it 
would be about 100 times better than the best clocks shown here. 
 

 
A similar plot could be made for the navigation community showing the position dispersion rate for various 

navigation devices. This may be a useful tool to see which technologies could be brought together in 
combination to make a significant improvement in both the short-term and long-term performance.  
 
Systematics 

A good model for time deviations in a clock is: x(t) = xo + yo t + ½ D t2 +   (t), where xo and yo are, 
respectively, the synchronization error and syntonization error at t = 0, D is the frequency drift, and   (t) 
represents the remaining random errors on top of the first three systematic error terms. It is good to subtract the 
systematics from the data so that the random effects can be viewed visually and then analyzed with better 
insights. Much can often be learned by this approach.  

If frequency drift is present in a clock, and it usually is, then it affects AVAR, MVAR, and TVAR in the 
following way: 

2

( ) mod. ( ) and ( )
2 6

y y x

D D 
          . 

An example of the effect of frequency drift on an ADEV plot is shown in the next figure. 
 

 

Figure 10. Illustration of the effects of frequency drift on an ADEV plot. 
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If there is frequency drift, the values of ߪy(࣎), in that region where the drift is affecting the plot, will lie 

tightly on the ࣎+1 line. If there is random noise present then the values will not fit tightly to this line. 
If there is a frequency modulation, fm, present in the data then it also has a systematic effect on the analysis in the 

following way for ADEV: 2( ) sin ( )pp
y m

x
f    


, where xpp is the peak-to-peak amplitude of the modulation. 

The following figure shows the effect on an ADEV plot. 
 

 
Figure 11. ADEV with frequency modulation, fm, present on the data. 
 

Both MVAR and TVAR are affected as well. A plot of the effect on TDEV is shown in the next figure. 

 
Figure 12. The effect of frequency modulation on a TDEV plot when that modulation is on top of the signal and noise. 
The white-noise PM causes the ࣎--1/2 behavior in the plot. Notice the modulation averages down as ࣎--1. The equation 
fitting th  effects of the modulation is empirical. e

At ࣎ = n/f
 

m. the effect of the modulation is aliased away, where n is any positive integer. Recognizing this 
null effect allows these three variances to be used as low-frequency spectrum analysis techniques for bright 
Fourier-frequency lines in the data. It is my experience that low-frequency spectral lines can often be observed 
using this null approach in the time domain better than can be observed in the frequency domain. We will find 
this effect very useful in the EXAMPLES section of the paper, which is next. 
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Examples and some application opportunities of these variances 
 

 Clocks of the 1960s and 70s 
 

In the following figure we have a sigma-tau plot of the frequency instabilities between a precision free-
running, quartz-crystal oscillator and a commercial cesium-beam atomic clock. One sees for sample times, ࣎, 
shorter than one second a ࣎-1 behavior do to the measurement noise. This plot was made before MDEV was 
developed, so we are not sure of the noise type because of the ambiguity problem with ADEV for this slope. I 
have observed the same ambiguity problem in some of the navigation stability plots that I have seen. Whenever a 
࣎-1 behavior occurs in an AD plot, one should then analyze the data using MDEV to hopefully resolve the 
ambiguity regarding the kind  ise modulation present in the data. 

EV 
of no

The rise in the value of ߪy(࣎) as the sample or averaging time approaches 10 seconds is due to the attack 
time of the cesium-beam locking its quartz-crystal-slave-oscillator to the cesium resonance. Over the next decade 
we see a ࣎-1/2 behavior; or 1- = ࣆ which means α = 0 from our simple “super-fast-Fourier” transform relationship, 
and this is classical white-noise being measured for this cesium-beam atomic clock. For the longest averaging 
times we see a ࣎0 behavior, which then corresponds to α = -1, and this is due to the flicker-noise FM of the 
precision, quartz-crystal oscillator. Even with the ADEV ambiguity problem, we were delighted in the 1960s and 
70s to be able to characterize so easily the noise type and level of the clocks then being used for timekeeping for 
the USA. 

 

 
Figure 13. An ADEV plot for a precision, quartz-crystal oscillator versus a commercial cesium-beam atomic clock. 

 
In 1965, we had a very interesting clock comparison at NBS in Boulder, Colorado. Bob Vessot brought his 

hydrogen maser from Boston, Massachusetts. Harry Peters brought his hydrogen maser from NASA Goddard, 
Beltsville, Maryland. Len Cutler brought his Hewlett Packard commercial-cesium-beam, atomic clock from Palo 
Alto, CA. We had the NBS primary frequency standard and data acquisition systems. This grand-clock-
comparison effort resulted in an interesting 12 author paper. http://tf.boulder.nist.gov/general/pdf/172.pdf . 

It was my responsibility at that time to provide the NBS reference time-scale for comparing all of these 
clocks. Up to this point, Jim’s algorithm had been generating time for NBS and for the civil-sector of the USA. 
With Jim’s ever-present help, I wrote a new time-scale algorithm, AT-1. With several refinements by Tom 
Parker and Judah Levine since that time, that algorithm is still generating time for the USA today. This time-
scale algorithm was a major application of the "Allan variance" and generated a near real-time software clock 
with the following optimization features: 

 Its software-clock output can be shown to be better than the best clock providing input; 
 Even the worst clock enhances the output; 
 If a clock misbehaves, it is rejected and not used – avoiding unnecessary perturbations; 
 Each clock gets an optimum weighting factor for inclusion in the time computation; 
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 The weights are adaptive so that if a clock improves over time, its weight increases and vice versa; 
 The optimum time of each clock as well as the optimum estimate of the frequency of each clock are 

estimated at each measurement cycle; 
 Both the short-term as well as the long-term stability of the software ensemble output are optimized; 
 And it is able to deal with white-noise FM, flicker-noise FM, and random-walk FM, which are the kinds 

of noise processes that well model the atomic clocks being used; 
Originally, I used a PDP-8 computer and had eight clocks in the ensemble; AT-1 had 94 lines of code and 

provided error messages. I had to use some variables three times to not exceed the available logic limit. It is 
interesting to watch this algorithm’s performance, because it is almost as if it is alive as it breathes with each 
clock’s behavior. AT-1 has been generating the official time for the USA for nearly 50 years. 

 
 New optical clock stabilities using total ADEV 

 
As we look at some of the exciting new optical clocks, the following ADEV plot is from data taken at NIST 

in Boulder, Colorado comparing two ytterbium optical lattice clocks in 2013. This plot utilizes the “Total 
ADEV” approach developed by David A. Howe and his group, which gives optimum confidence on the long-
term stability estimates for ADEV. Long-term data are extremely v luable, so this “Total ADEV” technique adds 
greatly to the information one is able to learn from the data. 

a

Here we see the best stability ever observed to that date of ߪy(࣎ = 25,000 seconds) = 1.6 x 10-18. This is like 
an error of 50 ps in a year. A picosecond is a million-millioneth of a second (10-12 s); 50 ps is the time it takes 
light to travel 1.5 cm. This is 20 times better than the nanosecond accuracy that GPS needs and they have to 
upload their GPS corrections at least once a day. In this plot we see the nearly ideal atomic-clock (࣎-1/2) white-
noise FM behavior over about four decades of averaging time at a remarkable level of 3.2×10-16 at 1 second. 

 

 
 
 
Figure 14. Comparison of two ytterbium optical-lattice atomic clocks operating at 518 295 836 591 600 Hz 
 
Millisecond pulsar timing using MDEV 
 

Going back to 1982, the first millisecond pulsar was discovered by Donald Backer, Shri Kulkarni, Carl 
Heiles, Michael Davis, and Miller Goss. Its name PSR B1937+21 is derived from the word "pulsar" and 
the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for 
the 1950.0 epoch. This pulsar had the best astronomical timing performace of anything ever observed. I read 
their paper and was intrigued. I could see some ways we could help them, so I made contact with Dr. Michael 
Davis, who was the scientist in charge at the Arecibo Observatory where the data were being taken. Mike invited 
me down, and in 1984 I installed a GPS common-view receiver to tie their clock, which was making the pulsar 
measurements, to the world’s best atomic clocks. 

One can see in the next figure, the very complicated system for this millisecond pulsar measurement and the 
nominal behavior in each link of the measurement system chain. 
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Figure 15. Measurement system for the millisecond pulsar. Note the improvement of nearly a factor of three in the 
stability measurements from 1985 to 1987 indicated at the bottom of the figure due to the help we were able to give them. 
 

The next figure is an excellent example of the advantages of the modified Allan variance. As I studied the 
data, I was able to observe random-walk (f-2 spectrum) in the delay between two different observation 
frequencies for the pulsar. They had assumed that the electron content along the path was constant. This result 
showed that it was not, and when the 1/f2 ion content correction was applied the random-walk effect was 
suppressed leaving white-noise PM residuals as is shown in the next figure using MDEV to show this benefit. 

 
Figure 16. The PTB is the primary frequency standards laboratory for Germany. “Pas” stands for passive hydrogen 
maser. H-maser is for an active hydrogen maser. For shorter than 100-second averaging times, active hydrogen masers 
often exhibit white-noise PM, which is a ࣎ -3/2 slope like the slope of the measurement noise of the pulsar. PSR 1937+21 is 
located about 1/7th of the way across our galaxy, and the hope then was that we might see gravitaional-wave perturbations 
in the path indicated by “GW Background.” 
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Over the next several years, they did a 25-million dollar upgrade on the Aericebo telescope to bring about 
several major improvements and hoping to move the measurement noise down to the indicated 100 ns level. 

In about 1990, I shared the following frequency stability plot at a UC Berkley, California, millisecond pulsar 
workshop. As these new fast spinning pulsars were thought to be competitive with atomic clocks, there is a very 
fundamental message in this plot. Even if they achieve the 100 ns white-noise PM measurement noise level with 
their upgrade, the data need to be averaged for about 200 years to reach a stability level of 10-18, which is about 
where the best clocks are now. In other words, you would get one data point every 200 years at the 10-18 level – 
clearly not a competitive clock. I had no comments from my expert millisecond pulsar colleagues in the 
audience! One may further note that the ytterbium stability has, as of two years ago, surpassed by a factor of 
three that shown in the figure for the best anticipated performance of the cooled single Hg ion.  
 

 Opportunity for improving GPS accuracy 
 

The GPS satellites (SVs) orbit the earth at about 4.2 earth radii. This distance creates a significant geometry 
problem for determining the vertical distance of the satellites from the center of the earth because the tracking 
stations’ vectors are too close to parallel. GLONASS solves this problem by using retro-reflectors on the 
satellites and by doing round-trip-laser ranging from a ground station of known position to each of the satellites. 
This they can do to about 5-cm accuracy, which is about 12 times better than GPS. 

Kepler’s third-law has built into it the needed orthonality to solve this vertical-distance problem: 
2

2 34
T r

GM


 , where T is the orbit period, G is the universal gravitaional constant, M is the mass of the earth, and 

r is the radius from the center of the earth to the satellite. Since the orbit is tangential to the radius vector, if we 
can determine the point of closest approach to a tracking station of known coordinates, then we have the 
orthogonal information we need to determine the radius vector. The Doppler shift of an SV’s clock will go to 
zero at its point of closest approach with respect to its tracking station. This zero-Doppler shift gives us a precise 
marker in its orbit period, T, with an uncertainty δT. From the above equation, we can derive the uncertainty in 

the radius vector:  
2

3

T
r r

T


  . With current high-performance atomic clocks and using MDEV to assure that 

the residuals are white-noise PM, so that all the systematics have been properly removed, then our calculations 
indicate that δr can be made to be less than a centimeter. The value of δT can be made very small because with 
white-noise PM being the limiting measurement noise, its value decreases as the data-length to the minus 3/2s 
power for the viewing-time of the satellite’s pass. 

There are some important contingencies associated with making this equation work properly. Professor Neil 
Ashby, who did the relativity equations for GPS, and I worked on modeling this approach in the 1990s and got 
some excellent results. Clocks have gotten significantly better since then, and the requirement for a zero-g 
environment as was done for Gravity Probe-B is now more readily available. There are some other 
contingencies, but the advantages are enormous; being an all-weather system is one. One of the biggest 
diadvantages is that this approach is a major change in system architecture, but these changes could be done in a 
meaningful step-wise process. 

I felt that this-high accuracy technique was far enough along that I sent a letter to the GPS Headquarters 
folks for their consideration. I describe this some in Chapter 20 of my book, and the details may be found in 
Appendix K of the book’s web site, www.ItsAboutTimeBook.com . 

 
 New unified field theory results validated using ADEV 

 
Starting in 1999, we were working to understand a new concept in relationship to the UFT. This concept is 

explained in papers on our web site: www.AllansTIME.com/UFT_private and in Chapter 21 of my book. The 
book has exciting new information that has never been published before. The concept is that what we call diallel-
field lines can carry all four of the force fields plus much more and connect everything to everything. The book 
by Lynne McTaggart, The Field, describes many experiments consistent with this new UFT. 

We first did experiments to show the existence of these diallel-field-lines, and then that they had quantum 
states. Whereas the quantum states in atoms or molecules are generally thought of as being spherical or elliptical, 
they are nominally cylindrical in the diallel-field structure. In the fall of 2000 we observed for the first time 
quantum-trasition emissions from these diallel-field-lines. This and some of the other experiments were 
performed in the laser physics lab at BYU. They kindly let me use it as an alumnus. All these experiements are 
described in Chapter 21 of my book. We have done seven experiments to date validating this new UFT diallel-
field-line theory. 

  521



 

The following figure illustrates the diallel-field-line coupling of the planets to the sun and their effect on the 
sun-spot activity. I used 100 years of sunspot data and I analyzed it using ADEV as shown in the following 
figure. As predicted by this new UFT, we were delighted to find the periods of all the major planets present in 
the sun-spot data except for Uranus, where our 100 year data length was insufficient. I also used the masses, the 
magnetic fields, and the planet’s orientations in space to see if I could nominally duplicate the sun-spot activity 
over the last 100 years. I had about an 80% correlation coefficient fit to the data. There is still a lot to be learned. 
We feel like infants exploring the biggest forest in the world. 
 

 
 
Figure 17. ADEV plot of 100 years of sun-spot data showing the periods of all the major planets except for Uranus, where 
our data lenth was too short to resolve its period. 
 
Conclusions 

 
It has been fifty years since I finished my master’s thesis. With fifty years of experience in the time and 

frequency community, the use and improvements upon the Allan variance have matured significantly. I observe 
a similar maturing in its application in navigation scenarios and in other areas of metrology. 

As I review the literature in this regard, there are three technical areas where I will make suggestions that I 
feel will be of most h lp in this maturing process.  e

First, for 16 years we lived with the ambiguity problem with the Allan variance when its square-root 
(ADEV) behaves as ࣎-1 – not being able to distinguish between white-noise phase modulation (PM) and flicker-
noise PM. That ambiguity problem was resolved in 1981 with the development of the Modified Allan variance, 
which allowed us to modulate the bandwidth in the software. The quantization errors in integrated navigation 
systems have a white-noise spectrum; the use of MDEV would be very useful here. I have looked at several 
navigation papers by some of the best experts in the field using the Allan variance, and I have found very few 
using MDEV. In the case of quantization errors, MDEV allows to average the noise down as ࣎-3/2, which then 
allows the observation of other noise types and instability problems more quickly. MDEV is also the optimum 
averaging technique for such errors. In this same regard, if one desires to know the rate with white-noise 
residuals present, then a linear regression on the slope improves the knowledge of the slope as N-3/2, where N is 
the number of data points in the regression analysis and is the optimum estimate of the slope for exactly the same 
reason that MDEV improves as ࣎-3/2. I am happy to see that it is beginning to be introduced by some navigation 
researchers. 

Second, after the quantization errors are averaged down, ADEV works well and is an efficient metric for 
characterizing the intermediate and longer-term instabilities. But because the Allan variance is Chi-squared 
distributed, when the degrees of freedom get too small for the longest averaging times available from the data, 
then the ADEV values are often too small. This problem has in large measure been solved by David A. Howe 
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and his group at NIST, Boulder, Colorado, with “Total ADEV” and useful variations thereto (see the references). 
Their work, in a clever way, adds the needed degrees of freedom. Their work could be applied usefully to 
navigation error analysis as well. Long-term data are often very expensive to acquire, so Total ADEV and its 
cousins give a more efficient use of the data. 

And Third, systematic errors are often hard to deal with. We have found it generally useful over the years 
to subtract the systematics from the data, as much as is reasonable, before analyzing the residuals for their noise 
characteristics. This practice is usually done after the fact, but can be done in real-time with proper filter 
functions and prediction algorithms that will estimate and remove the systematics. Since optimum estimation 
procedures depend upon the kind of noise, this problem can be solved recursively or from some prior knowledge 
of the noise characteristics of a given system. The principle of parsimony dictates that we use the simplest and 
most efficient metric in our noise analysis. ADEV satisfies that requirement in many areas of metrology, and I 
believe that is the main reason for its becoming as widely used as it is and ever growing in different areas of 
metrology. If the systematics are not subtracted from the data before the noise analysis, these systematics often 
adversely affect the long-term values in an ADEV plot. For this reason, the GPS program people went from 
Allan variance to the Hadamard variance, which is a third difference operator on the time residuals and is not 
sensitive to the systematic-frequency drift that plagues the performance of rubidium-atomic clocks used in the 
GPS satellites. The Hadamard variance is not parsimonious, and they would have better noise analysis 
confidence estimates by estimating and removing the frequency drift, and then use ADEV and Total ADEV (or 
similar) to analyze the noise characteristics of the residuals – from which they deduce their Kalman filter 
parameters for optimizing the GPS performance. 
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ambiguity problem in ADEV when it behaves as -1 for the quantization noise problem. MDEV is a better metric 
in this case, as I have cited before. 

Because 1/f noise and fractals are so ubiquitous in modeling nature, we expect non-stationary analysis 
techniques – like in the family of Allan variances – to be useful as efficient time-series analysis metrics. The 
usage seems to be growing, but there are many areas where these metrics seem to be unknown statistical tools. In 
my own research, I have shown these variances to be useful in analyzing the stability of gage blocks and volt 
standards. Richard F. Voss has demonstrated 1/f noise in a large variety of music. Musha and Higuchi have 
identified 1/f noise in traffic flow. The height of the River Nile at flood stage over the last some thousands of 
years for which there are data has a 1/f spectral density. Such noise is found in economics, psychology, and in 
neurons. Pink noise is another name for 1/f or flicker-noise. You will find a fascinating article in Wikipedia on 
“Pink Noise” – showing its ubiquitous nature – and a large number of references are given there. 

As a fun health example, since neuron noise is 1/f, if you were to stand on one foot and then map the motion 
of the top of your head, the time series would be a flicker-noise process. If now you get on a bicycle and ride it 
to follow a straight line, since you have to integrate when riding a bike to maintain balance, the front tire 
deviations from the straight line will be an f-3 spectral-density process. With a controlled set of parameters, this 
bicycle balancing activity could be used – using ADEV to analyze the deviations – in a very simple way to 
access improvement or degradation in your balance. Since I am an avid mountain bike rider, I am observing this 
phenomenon a lot – especially on a narrow deer trail on a steep slope in the mountains near our home. 
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Abstract 
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The report is dedicated to the methodological aspects of the interpretation of the Allan variance graphs and identification 
of the gyro noise structure. The main objectives of the work are the following: 1) methodological comment on common 
misconceptions and blunders in the interpretation of the Allan graphs concerning the identification of noise structure and 
estimation of noise parameters for different types of gyros, based on the examples from the papers published in the 
proceedings of the St. Petersburg International Conference on Integrated Navigation Systems of the previous years; 2) 
statement of the problem of extending the noise process basis and taking into account the gyro noise of different types 
unaccounted in the existing standards on gyros in order to correctly identify real gyro noise; 3) demonstration of types of 
noise (which has not been taken into account before) and partial contribution of this new noise into Allan deviation graphs. 
That was the main point of a short message proposed by the author a priori in his poster presentation. 

Since the international program committee of the conference has made a decision to discuss this subject at the “round 
table”, allowing 5-fold time for this presentation, the author has complemented the report with one more section consisting 
of three parts: On the differences in orientation accuracy determined with SINS and platform INS with the same gyros, A new 
noncommutative kinematic effect,  and What is “good” and what is “bad” in the part of noise in gyros for application in 
platform INS and SINS?  They describe the difference between accurate kinematic error equations of platform INS and SINS; 
the necessity of the gyro noise structure identification; the form in which information on gyro noise should be represented; 
the difference in the required specification of the gyro noise structure for applications in platform INS and SINS; and the 
difference in noise identification problems in radio physics – in frequency standards (“time”) and in gyroscopy. 

It is for the first time in the world that a new non-commutative kinematic effect is proposed: “The accuracy in 
determining orientation with platform INS and SINS, built on the same gyros, is different even (“even” is the keyword) when 
the errors and noise of these gyros are identically equal in platform INS and SINS”. One of the essential and most important 
manifestations of this effect is the following: “In zero frequency, gyro noise with zero power spectral density does not lead to 
significant increase in orientation error in time for platform INS (second-order “smallness” effect), but leads to rather 
significant increase in orientation error in time for SINS (first-order “smallness” effect)”. The difference in partial 
contribution of this noise to the accuracy of platform INS and SINS is some order of magnitude (10-, 100-, 1000-fold and 
more), depending on the specific gyro noise structure and form of the object rotation. 

Three infinite (countable) set of new noises and the Allan variances corresponding to them are presented.  
In order to better identify the gyro noise structure on the basis of the Allan variance method (and its generalizations), an 

Allan-Krobka functional–dispersion is proposed in addition to the Allan variance. 
The real white noise level of Russian FOGs, less than 0.000001 deg/(hr)1/2 (10-6 deg/(hr)1/2), is demonstrated by the 

example of an Optolink FOG. 
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Introduction 
 
In the first part of the report for the first time the difference of errors accumulation in time for orientation 

determination (attitude position) of platform inertial navigation system (INS) and strapdown INS (SINS), based 
on the same gyros (on any physical principle) with arbitrary errors and noises is discussed in detail. There are 
two types of effects: first of them is wellknown, and the second is new and not a trivial. The first is that the 
orientation determination accuracy by platform INS (hereinafter, for brevity, sometimes – INS) and SINS, with 
the same gyros is different. This effect is obvious, because gyros on gyro-stabilized platform (GSP) “track” a 
narrower range of angular velocities, than gyros in SINS. Therefore, the components of gyro’s errors 
proportional to the angular velocity, caused by the errors in scale factor, (and nonlinear errors in the measured 
angular velocity for for some types of non-linearity) for the same gyro in platform INS is less than in SINS. The 
second (more “subtle”), previously unpublished effect, is that the accuracy of platform INS and SINS, based on 
the same gyros, is different even (here “even” is the keyword) with identical gyros’ errors and noises in platform 
INS and SINS. For example, if gyros have only additive components (not depend on measured angular velocity) 
of errors (equals for platform INS and SINS), than the rate of orientation error accumulation for platform INS 
and SINS, i.e. accuracy, is different (except for some particular cases). The difference in orientation accuracy 
with platform INS and SINS may range in order of magnitude (in 10, 100, 1000 and in more time), depending on 
the noise structure and the type of object rotation. Moreover, platform INS or SINS may be more precise 
depending on the structure and the type of the object rotation. This effect explains the necessity of the correct 
identification of gyros noise structure. For gyroscopes for SINS accurate noise structure identification is more 
critical than for platform INS gyroscopes. 

In the second part of the report on the example of reports at St. Petersburg International Conference on 
Integrated Navigation Systems in previous years, typical misconceptions of four different kinds in interpretation 
of gyro noise structure with Allan variance method are presented and commented: 
1) Lack of understanding of Allan variance ( )  -graphs method’s “basis”. An example of incorrect white noise 
level estimation for micromechanical gyros (MMG) is shown (they incorrectly estimated on section of Allan 
variance graph with slope Δ = – 1/2). The error value is one-two orders of magnitude. 
2) Misunderstanding of Allan deviation -graphs “summing” effect. Typical examples – determination of ( ) 
bias instability, using a tangent with slope Δ = 0 in the minimum point of the ( )  -graph of Allan variance. So 
obtained upper bound differs from the actual value of bias instability in times. 
3) Misunderstanding of "nuances" in Allan variance method. An example of incorrect white noise level 
estimation for fiber-optical gyros (FOG) is shown (due to effect of “screening” by Markov process with short 
correlation time. The error value is two-three orders of magnitude. It is shown that the level of Russian 
developed FOG’s white noises is less 0,000001 deg/(hr)1/2 (10-6 deg/(hr)1/2). 
4) Ignoring incompleteness of used “basis” of noises for gyros noise structure identification (in strict accordance 
with the algorithm of classic joke: “One should search lost thing under a lantern, because it is lighter under the 
lantern”) with Allan variance method. 

The examples from practice, that are illustrating the presence of FOG noises, not recorded in the error model 
(standardized by IEEE Std 952-1997 and IEEE Std 952-1997 (R2008), are shown. 

The problem of expansion of noise’ “basis” for correct noise structure identification is stated. 
Three infinite (countable) set of new noises and the corresponding Allan variances are presented.  
In order to better identify gyros noise structure on basis of Allan variance method (and its generalizations) 

the additional to Allan variance functional – Allan-Krobka dispersion is proposed. 
The actual level of Russian design FOG’s white noise is demonstrated (on the example of RPC “Optolink” 

Ltd.) – less than 0,000001 deg/(hr)1/2 (10-6 deg/(hr)1/2). 
 
1. On the difference in accuracy of orientation determination by SINS and platform INS  
    with the same gyros 

 
In June 1960 on symposium “Frontiers of Science and Engineering Symposium” Dr. Charles Stark Draper – 

“father of inertial navigation”, also known as “father of inertial guidance”, as he is called in the USA [1-3], 
stated his personal forecast about the ways of INS development: “Author thinks, that high quality inertial 
systems based on fixing sensitive elements on object, are not among the perspective systems” [4].  

Such opinion was based, obviously, on difference in principles of platform INS and SINS construction. 
Indeed: errors  of any gyro contain components of three different type: additive  (independent of the 

measured angular velocity 

( )t ( )a t

( )t ), linear ( ) ( )m t t  and nonlinear ( , ( ))n t t  in the measured angular velocity 

                                                                                             (1.1) ( ) ( ( ), ) ( ) ( ) ( ) ( ( ), ).t t t a t m t t n t         t

Gyros in SINS are strictly attached to the object’s board and they “track” the whole range of object’s angular 
velocities  (typical values {SINS}, + {SINS}]( ) [t     {SINS} : 10 deg/s, 100 deg/s, 1000 deg/s or more for 
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fast rotating object). The error in gyros has the form: 
( ) ( ( ), ) ( ) ( ) ( ) ( ( ), )t t t a t m t t n t         t ( ) [ {SINS}, + {SINS}]t;      .                       (1.2) 

In platform INS gyros, that are mounted on GSP, when the angular velocities of the object  is the same, 

“track” only narrow range of angular velocities 

( )t
{GSP}, + {GSP}]( ) [t    

( )t

, because GSP “works off” object 

rotation (for example, with the opposite sign:   in the case of stabilized in inertial space GSP with the 

accarucy of gyros errors ( ( )t ) and imperfections of GSP subsystems ( )t {GSP} . Typical values : 

0,1 deg/hr, 0,01 deg/hr, 0,001 deg/hr or less, depending on accuracy of gyros and implementation quality of GSP 
tracking systems.  

{GSP}

Gyroscope error in GSP is following: 
( ) ( ( ), ) ( ) ( ) ( ) ( ( ), )t t t a t m t t n             t t ( ) [ {GSP}, + {GSP}]t;      .                (1.3) 

The errors of the same gyros used in the platform INS (1.3) and in SINS (1.2) are different in strict 
accordance with (1.1) and with principles of platform INS and SINS construction. For example if GSP is 
stabilized in inertial space (this variant has been traditionally used in missile applications, for which Charles 
Draper with his team in USA and Viktor Ivanovich Kuznetsov with his team in USSR developed complex of 
command devices for control systems), then errors’ linear components ( ) ( )m t t  (due to inaccurate 

determination and noises of scale factor) of the same gyros, if used in platform INS and SINS, will differ by 
factor / . For example, when {GSP} {SINS} {SINS} ~10 deg/s and {GSP} ~0,0001 deg/hr ratio 

/   is ~3·10{GS P} {SINS} -9 – “as much as” – eight orders! Similarly (but with accuracy up to specific form of 
nonlinearity in function ( ( ), )n t t ) and for nonlinear components of errors (1.1). In the extreme ideal case in 

platform INS 
{GSP} 0    ( ) ( ) 0m t t  ,                                                             (1.4) 

but in reality one can reach values of linear and nonlinear gyro error components (1.3) in GSP much smaller, 
than the value of additive errors (1.3): 

( ) ( ) ( )m t t a t  .                                                                        (1.5)   

Charles Draper has no doubt that the platform INS has this advantage over SINS, and of course he was 
absolutely right. Any gyroscopes, mounted on GSP (which is stabilized in inertial space) are in more “comfort 
condition” because they don’t track the full range of objects’ angular velocities and “automatically” show the 
better accuracy performance in platform INS than in SINS. This is obvious. Charles Draper have fulfilled the 
technology of the platform INS to its perfection – the spherical floating platform – inertial measurement unit 
AIRS (Advanced Inertial Reference Sphere) [5, 6] was created. In AIRS a gimbal wasn’t used as it. It was 
gimbal free, but still platform INS. 

And what would be in the case of gyros, which in the whole range of objects’ angular velocity a priori (“on 
table”, but not in GSP) have the following conditions  

( ) ( ) ( )m t t a t  ;  min max( ) [ , ]t     ?                                                     (1.6) 

There were no such gyroscopes in 1960. The problems had to be solved quickly, which was done. How? In 
the manner the problems are usually solved: “in three moves” [7]. The first move: the best at that time floating 
gyroscope was chosen by the criterion of a minimal drift – additive component . The second move: the error 
inherent in gimbal was eliminated (dialectically, it was no longer used: 

( )a t

GSP}( ){ mint  ). The third move: the 
goal was obtained owing to the workmen’s skillful hands: 

{GSP} min max ( )a t   .                                                               (1.7) 

As a result, the accuracy of the angular orientation of inertial navigation units AIRS was ~ 1·10-5 deg/hr [5, 
6], i.e. at the level of additive gyro drifts, as it should be. 

And, forecast that the “high-quality” SINS “are not among the promising systems” was not proved. Why? 
Because gyroscopes satisfying (1.6) were soon developed. 6 months later, in December of the same 1960, neon-
helium lasers were created [8], and 2 years later, laser gyro (LG) prototypes [9] were created, which became the 
basis for SINS development. SINS based on LG came to replace INS after 20 years of development since the 
early 1980s. 

So. Here is the obvious known effect: «The accuracy of orientation (attitude position) determined by SINS 
and platform INS built on the same gyros is different». 

But what happens in case of gyroscopes that satisfy a priori conditions (1.6) over the entire range of angular 
velocities? Simplify the task to the maximum. Let us consider a model gyro that has only additive error 
component (1.1): . We shall use three gyros, which have only additive component of error: 

( ) ( );  1,2 . On the basis of these gyros, let us construct “ideal” INS and “ideal” SINS (by ideal we 

mean that these systems do not have any other sources of errors, except gyros additive noises and errors, which 
are the same for SINS and INS). Let us s formulate the question as follows: “Will the accuracy of orientation 
determination (attitude position) of these two systems be the same or different?” 

( ) ( )t a t 
,3i it a t i  
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The author does not have any doubt about the answer (It has been tested on professionals of different levels 
and experts of gyroscopic and navigation technology  in 1973–2015): “Since both INS and SINS are ideal in the 
sense that they do not contain any other error sources, except for gyro additive errors and noise (which are the 
same for platform INS and SINS), then their accuracy will be identical. It is obvious!”    

However, the answer is wrong! 
 

2. New non-commutative kinematic effect 
 

The discussed effect is convenient to explain by the following kinematic diagrams. 
In the case of absolutely ideal SINS, which (by definition) doesn’t have any errors, its subsystems – 

strapdown inertial orientation system (SIOS) is described by diagram: 
( )EA

I


 E

.                                                                       (2.1) 

Here orthonormal invariably fixed to object’s board basis ( )E E t , which is formed by the unit vectors of 
gyro sensitivity axes, is rotated around it’s initial position  (inertial basis), the direct cosine matrix I

( ) ( ( ))EA A t A t    corresponds to the current (in time) relative orientation of the bases I  and , corresponding 

to object’s rotation with vector of absolute angular velocity 

E

( )t 
 

, given by projections in fixed basis E . 

1 2 3 1 2 30( ) { ( ), ( ), ( )} ;  ( ) { , , } ;tE t e t e t e t E E t i i i I   
    

1 T( ) ( ( ) ) ;  ( ) ( ( )) ;  det det 1;m n m nA A t e t i A A B B t i e t A B          
  

   
3 3

1 2 3 1 2 3
11

T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ; ( ) ( ) ( ) ( )( ) q Ι Ep p q
qp

t i t e t t t t t t t t tt


               
 

  . 

The Euler-Poisson kinematic equations (KE) for matrices A  and B  have a known form [10]: 

00 0( )   ( )  ( )  ( ) ;   IE E I I t tA A B B A A B B A B                    ;                    (2.2)   

3 2 3 2 3 2

3 1 3 1 3 1 0

2 1 2 1 2 1

0 0 0

( ) 0 ;  ( ) 0 ;  ( ) 0 ;  I 0 1 0

1 0 0

0 0 0 0 0 1
E I

x x

x x x

x x

           
                         

                 

 
  .  

Hereafter argument  (time) for all functions of time is dropped for brevity. t
In general, the object (fixed basis) arbitrarily rotates in inertial space. 
In SIOS, ( )EA   (orientation of basis  relative to inertial basis ) is determined after integrating KE with 

measured (by gyroscopes) angular velocity 

E I

E . 

In the real case, there are gyros’ errors and noises E . The matrix ( EA  )  is defined by perturbed angular 

velocity E E    E . Because basis , in which the angular velocity is measured, remains the same 

(regardless of the gyroscopes’ errors presence or absence), physical interpretation for error of orientation 
determination by SINS is unique – rotation of perturbed basis 

E

I  relative to inertial basis . I

Kinematic diagram of perturbed SIOS functioning takes the form: 

1 1

( )

 

( ) ( ) ( ) ( ) ( ) ( );
( )   ;           

( ) ( ) ;  ( )

( ) ( ) ;   ( ) ( ) .

( )

E

E E E

E E I I E E
I

E E E I I E E I E E

E E E E

E

I

A

A A A A B A
A Е

A B B

B A B A

A

I



    
      

 
   

 





     
          

  
                

     







;
,         (2.3) 

In the case of absolutely ideal platform INS her subsystem – GSP is described by diagram: 

( )

1.

( ) ( ) ( ) ( )

( )                                 ( ) ;

( ) ( )

E E ;E J

J E E E

E E

A A

A B A

I J E B A 

   
          
       

E J

A A  
                              (2.4) 

Here, basis J  added additionally to (2.1), rigidly fixed to stabilized platform of GSP, on which have 
mounted gyroscopes and accelerometers. Transition  on diagram (2.4) describes program rotation of basis I J
J  relative to . GSP may stabilize in inertial space: I ( )J t I ; may rotate so, that while object’s motion the GSP 
platform would be in local horizontal plane; may rotate with arbitrary program angular velocity, in particular, to 
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reproduce rotation of the object: ( ) ( )J t E t . Transition J E  on diagram (2.4) describes GSP rotation relative 
to object’s shell, which (while arbitrary object rotation ( )EA  ) provides the required rotation of GSP ( )JA  . 

Next, let’s look at the part of the diagram (2.4), which is interesting for discussing effect 
( )JA

I J

 


.                                                                        (2.5) 

In the case of platform INS, the basis J  physically “moves” relative to its program position, due to gyros 
errors and not ideal GSP (errors of GSP tracking system). Let’s denote perturbed basis as J . The actual angular 

velocity of basis J  in projections to its axes is denoted J , and measured (by gyroscopes) angular velocity of 

its rotation (taking into account gyros errors) is denoted J  . Gyroscope errors have the form: 

J J J     . Orientation of basis J  relative to basis  is defined by matrix I ( )JA    .  

Kinematic diagram of perturbed GSP functioning has the form: 

( )
( ) ( ) ( ) ( ) ( ) ( );

( )

( ) ;( )

( ) ( ) .( )

(

J
J J J J J J

J J J J

 ;         J J J J J J J J J JJ

J J J J JJ

J

A
A A A A A B

A

AI A

B BA

B

J

      

   

         

     



 
               

       

                  

          







      (2.6) 

1 1) ( ) ;   ( ) ( ) .J J J JA B A  
        

In case of SINS the orientation error is described by any of two equivalent diagrams, where angular velocity 
vector of basis  rotation relative to basis  is defined by components in basis I I I , or in basis  (2.3):  I

( ) ( )

                

( ) ( )

I I

I E E I E E

A A

I I I

B B


I 

 

   
  

         
.                                 (2.7) 

In case of INS the orientation error can be described by any of two equivalent diagrams, on which the angular 
velocity vector of basis J rotation relative to basis J  is given by components either in basis J , or in basis J  

(2.6): 
( ) ( )

                

( )

J J

J J J J J

A A

J J J

B


J 

   

   
  

       
.                       (2.8) 

In case of GSP stabilization for platform INS in inertial space ( J I ): 
( ) ( )

                

( )

J I

J J I J J

A A

I J I

B


J 

   

    
  

        
.                       (2.9). 

Another notation is used after replacement J I  in (2.9): 
 ( ) ( )I J J I JB B J                . 

Let’s limit ourselves by commenting diagrams (2.7) and (2.9), i.e. SINS and INS, which has stabilized in 
inertial space GSP. In case of INS “physical” basis J  (fixed to GSP) rotates (“moves”) relative to inertial basis 

 with angular velocity vector . In case of SINS “mathematical” basis  (“physical” GSP basis 

analog) rotates (“moves”) relative inertial basis  with absolute angular velocity vector . 

I ( ){GSP}t


I
I ( ){SINS}t


                ( )
( ){SINS} ( ) ;         ( ){GSP} ( )

( )( )     

J JI E E

I J JI E E

B
t t t t

BB

   

 

                           

   
.        (2.10) 

Let gyros errors in cases of SINS and INS (in bases, in which the absolute angular velocity is measured, i.e. 
in basis  in case of SINS and in basis E J  in case of INS) be identical: 

T
1 2 3( ) ( ) ( );    ( ) ( ( ),  ( ),  ( ))J Et t t t t t t          .                                   (2.11) 

Rotation of  basis  (SINS) and rotation of  basis I J  (INS) have different angular velocity 

( ){SINS} ( ){GSP}t t  
 

,                                                              (2.12) 

what is obvious from (2.10), comparing 


nd ( ){SINS}t  a ( ){GSP}t


 and taking into account (2.11) in the same 
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basis I : 
( ) ;I EB     ( )I JB       .                                                   (2.13) 

The gyroscopes errors and noises vector   (mathematical vector – column matrix) in case of SINS is 
modulated by object rotation: ( )I EB     , and in case of INS by rotation (“move”) of GSP: 

( )I JB


       (2.13). Therefore, rotating with different angular velocity vectors (despite the fact, that 

vectors modules are identical), 
T( ){SINS} ( ){GSP} ( ( ) ( ))t t t     

  1/ 2t ,                                          (2.14) 

basis ( )J t  relative to basis  (INS) and basis  relative to basis  (SINS) are turned (for the same time) on 

different angles of resulting Euler rotation – on angle 

I ( )I t I

( )s t  (in case of SINS) and on angle ( )s t  (in case of 
INS), i.e. SINS and INS accuracies in general case (with rare exceptions) of arbitrary object rotation and 
arbitrary gyroscopes errors   are different: 

( ){SINS} ( ) ( ) ( ){GSP}s t s t s t s t        .                                               (2.15) 
The Euler turn angle ( )s t  and Euler turn  angle ( )s t are the natural criteria of orientation accuracy by 

SINS and INS. Let’s comment effect (2.15) and some of its manifestations. 

Let’s parameterize matrices A  and 1 TB A A      of SINS orientation errors and matrices A  and 
1 TB A A       of INS orientation errors by Euler turn vectors S  and S   

1 1 2 2 T 1/ 2
0

1 1 2 2 T 1/ 2
0

      I (sin / ) ( ) [(1 cos ) / )] ( );    ( ) ;    ( );

I (sin / ) ( ) [(1 cos ) / )] ( );    ( ) ;    ( ).

A B s s S s s S s S S S S t

A B s s S s s S s S S S





                     

                                 






 S t
     

(2.16) 
Vectors S  and S  and angles s  and ( )s t can be expressed by matrices A  and A :  

T T

T T

  (sin / ) ( ) ( ) / 2;  cos (Sp 1) / 2 (Sp 1) / 2;

(sin / ) ( ) ( ) / 2;  cos (Sp 1) / 2 (Sp 1) / 2.

s s S A A s A A

s s S A A s A A

               

                      
                          (2.17) 

The two forms of KE for the four matrices (2.16) can be obtained on the basis of general form KE (2.2), 
whice are corresponding to rotation of some basis relative to stable basis, taking into account the two forms of 
angular velocity representation (2.10) for these rotations. Of the eight KE the next pairs are the most convenient 

00 0( )   ( );  It tA A B B A B                      ;                               (2.18) 

00 0
( )  ( ) ;   I

t t
A A B B B B A B                 .                               (2.19) 

The equations (2.18) and (2.19) are the accurate errors KE (without any assumption of “smallness” of 
perturbation) respectively for INS and SINS, in general case of arbitrary gyroscopes errors and noises 

( ) ( ( ), )Et t t      and arbitrary object’s rotation ( ) ( ( ))EB B t B t   .  

The errors KE for INS (2.18) and SINS (2.19) are different. The KE solutions (2.18) depends only from 
gyroscopes errors, and KE solutions (2.19) depends both from gyroscopes errors and the form of rotation. The 
INS accuracy on GSP is a functional of one parameter, and SINS accuracy is a functional of two parameters: 

( ) ( ( ))s t s t     ; ( ) ( ( ), ( ))s t s t B t    .                                                 (2.20) 
To compare KE solutions (2.18) and (2.19) it’s convenient to consider the KE pairs, for which KE either 

“right” or “left” (i.e. in KE coefficients matrix is located either from the right or from the left of required matrix). 
Let’s choose pair of “left” KE forms from (2.18) and (2.19): 

00( ) ;  ItA AA         ;  00( ) ;  ItB B B B                                 (2.21) 

and represent their solutions by absolute and uniformly convergent series of successive approximation: 

0 0 1
0 0

;  I ;  ( ( )) ( )dτ;
t

n n n
n

A A A A A





                 0 0 1
0 0

;  I ;  ( ( ) ( )) ( )dτ.
t

n n n
n

B B B B B B





               (2.

22) 
Similarly for vectors and angles of Euler turn, taking into account (2.22) and (2.17) 

T T

0 2

T T

0 2

sin 1 1 1
( ) ( );      cos 1 Sp 1 Sp ;

2 2

sin 1 1 1
( ) ( );   cos 1 Sp 1 Sp

2 2

n n n n
n n

n n n n
n n

s
S A A s A

s

s
S A A s A

s

 

2

2

2

.
2

n

n

A

A

  
  

  


             







                  


  

  
                          (2.23) 

Taking into account (2.21)-(2.23), it’s easy to understand and prove the result (2.15). Indeed, despite the fact, 
that the modules of angular velocities are equal (2.14) or in equivalent form 

T 1/ 2 T 1/ 2{[ ( )] [ ( )]} {[ ( ) ( )] [ ( ) ( )]}t t B t t B t t      ,                                       (2.24) 
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the modules of vectors’ ( )   and ( ) ( )B     integral in general case (if 0( ) IB   ) aren’t the same 

0 0 0 0

T 1/ 2 T 1/ 2{ ] ]} {[ ( ) ( ) ] [ ]}
t t

B Bd d d d          .                  [ ( ) [ ( ) ( ) ( )
t t

                 (2.25) 

The effect (2.15) appears in any N -th ( order of successive approximation met1N  ) hod 

{ } { }                                 ;     
N

N N
n nA A A B B B           

0 0
{ }

{ } T { } T
{ }

0 2 2
{ }

{ }
{ }

sin 1 1 1
( ) ( );      cos 1 Sp 1 Sp ;

2 2 2

sin 1
( ) (

2

N

n n
N N NN

N N
n n n nN

n n n
N

N
n nN

s
S A A s A A

s

s
S A A

s

 

  


             



         




  

T { } T

0 2 2

1 1
);   cos 1 Sp 1 Sp   

2 2

N N N
N

n n
n n n

s A A
  

           

         (2.26) 

{ } { } { } { }T { } 1/ 2 { } { }T { } 1/ 2

1 1

;   ;   ( ) ;   ( )
N N

N n N n N N N N N N
n n

n n

S S S S s S S s S S
 

                             (2.27)  

and can be confirmed by this method with any precision. Parameter 1   added to (2.27) for the convenience of 

series { }NS  and { }NS  construction by method of successive approxi ation on the basis (2.26). 
The or kn nly three strict exceptions in general rule (2.15): 1) In the rare (but 

gyr

m
 auth ows o possible) for 

oscopes applications case of complete lack of object rotation 0( ) IB t   for arbitrary gyroscopes errors and 

noises  . This is obvious, since KE of errors for SINS and IN  are equal in the absence of object 
rotation. 2) In the rare (but possible) case, when the vector of gyroscopes errors is an eigenvector, which is 
corresponding to eigenvalue +1 of object rotation matrix: 

S (2.21)

( ) ( ) ( )t B t t   . 3) In the unreached by now case of 
presence of only white Gaussian noises (while arbitrary obje yroscopes error ct rotation) in g  . 

In order to estimate the effect (2.15) size when performed in practice conditions of “small” gyroscopes errors 
and orientation errors (it is independent conditions) of INS and SINS 

0 0 0 0

T 1/ 2 T{[ ( ) ] [ ( ) ]} 1;  ( ) 1;   {[ ( ) ( ) ] [
t t t t

s t B Bd d d              1/ 2  ( ) ( ) ]} 1;    ( ) 1 s td               (2.28) 

it is possible (except in the case of non-commutative kinematic effects (NKE) of N -th order, N  > 2
] 

 [11-13]) to 
limit ourselves by second order of successive approximation method (2.29) [14-22

21 2
1 1 2 2 1 1

1
( ) ( ) [ ( ) ( )] ;   ( ) ( )

tt t
S t dt dt t t dt t B tt             

0 0 0

( );
2

t                            (2.29) 

2
1 2

1 1 2 2 1 1
0 0 0

1
( ) ( ) [ ) ( )]

2
(

tt t
S t dt dt t dtt t          .                                       (2.30) 

In a first approximation the KE of errors solutions (this approximation coincid
widel

es with the accurate solution of 
y used KE of errors “in variations”) have the form 

0

1 1
1 1( ) ( ) ( ) ( )

t
S t t B t t       1   ;dt 1 1

1 1
0

( ) ( ) ( )
t

S t t t dt        .                       (2.31) 

To calculate the variance of the SINS and INS orientatio e error (considering noisen angl s in ( )t ) 
T 22 22 2 1/2 2 T( ) ( ) ( ) ;  ( ) [ ( ) ( )] ;  ( ) ( ) ( ) ;  ( ( )]( ) [s st s t s t s t S t S t t s t s t S ts t                     1/2)t S  (2.32) 

when using N -th approximations (2.27), including first approximation (2.31), it is necessary to known the 
distribution function of the random vector process ( )t . To calculate the mean square angles (2.31) it’s 
sufficient to use only statistical moments of 2N  order, but to calculate the average angles (including a non-linear 
operation – square root extraction) it’s not enough to have only moments, one needs a distribution function, 
which isn’t easy to determine experimentally. There are components with different statistics in the mixture of 
noises. For example, photo-counts statistics is Poisson [23] and it would be a mixture of Poisson and Gaussian 
noises in FOG. But LG doesn’t have such problem, due to the different type of information output: photocurrent 
is measured in FOG, and the number of interference fringes, which are “running through” two areas of the 
photodetector is counted in LG. 

But it’s possible to overcome this difficulty by using (instead of the dispersion) another similar in meaning 
functional [11], (called by colleagues in the Scientific and Research Institute of Applied Physics in the early 

0s: “the Krobka dispersion”), which is traditionally called by author “SINS orientation error dispersion” (or 
INS orientation error dispersion) 
198

T2 T T 2 T  ( ) ( ) ( ) ( ) ( ) ;   ( ) ( ) ( ) ( ) ( )s t S t S t S t S t t S t S t S t S t  s                   .            (2.33) 
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To calculate the “dispersion” (2.33) noise distribution function ( )t , obviously, isn’t required
re ex gles 

. 
The orientation “error dispersions” of SINS and INS (2.33) a ceed the dispersions of an ( )s t  or 
( )s t  by value, but don’t exceed value of second moments (a marg  precision does not hinder an in of ybody) 

2 2 2 2 2 2( ) ( ) ( );   ( ) ( ) ( )s s s ss t t t s t t t                ,                                 (2.34) 

what is obvious, because it doesn’t follow, that mean values of Euler rotation vec
equality to zero of gyroscopes errors vector mean value:  

tors are equal to zero from 

( ) 0t  ↔ ( ) 0;  ( ) 0S t S t    .                                                 (2.35) 

In the case of Gaussian noise statistics (taking into account known ef
order m
any

fect “correlation decay” of any even 
ent racy of SINS and INS orientation in oments on product of second order mom s) to estimate the accu

 order of successive approximation method it’s sufficient to know only noises correlation matrix 
(nonstationary in general case) 

1 2
T T

1 2 1 2 1 2( ,  ) ( ) ( ) ( ) ( ) ( ,  ) ;  , 1,2,3ijK t t t t t t k t t i j        .                         (2.36) 

For example, for quantum noises of gyroscopes, modeled by stationary Gaussian whit

Dir

e noise ( 1 2( )t t   – is 

ac delta function, ij  – is Kronecker symbol, [ 1/ 2
iD ] = deg/(hr)1/2): 

1 2( ) ( );  ( ) 0 ( ) ( )j i it t t t t D        1 2; ( );  ,  = 1, 2, 3i j t t i j   ,                  (2.37) 

by averaging and summing series (2.22), we obtain accurate average value of SINS error KE solution (for 
compactness of result representation let’s take 1 2 3D D D D   ) [11, 22] 

0( ) ) ( )( ) ( IDtA t t B t   B t A e      .                                  (2.38) 

The dispersions of SINS and INS orientation errors (2.33) for arbitrary object
specific typ

                         (2.39) 

SINS or INS may be more accurate depending on the structure of gyro
ourselves by additive components (1.1): “slowly” time-varying zero drifts 

 rotation don’t depend on the 
he for  e of rotation ( )B t  and coincide in magnitude, and in case 1Dt   have t m

2 2 2( )  ( ) 3 ((3s st t Dt O                                ) ).Dt

scopes errors and noises (let’s limit 
of gyroscopes ( )t  and “quickly” m

time-varying noises ( )n t ) 

( ) ( ) ( )m n
m n

t t t                                                      (2.40)                

and on the form of object rotation ( ( )S S t  – object’s Euler turn vector in inertial space) 

2 2 T 1/ 2
0( ) I (sin / [(1 cos ) / ] ( );  ( ) ;  (B S s s s S s S S S S t       ) ( ) )s S .                       (2.41) 

The partial contributions of different gyroscopes errors and noises (2.40) to resulting SINS
error may vary not only in times, but in orders. 

 and INS orientation 

First example. Because gyroscopes errors in case of SINS are modulated by object rotation, then “carousel” 
mode is automatically realized in SINS. To illustrate, let’s consider the simple case of constant gyroscopes 
biases and object rotation with constant angular velocity 

0 0( ) ;  0m t     ; ( ) ( ) ;  0E It t      ;  T 1/ 2 T 1/ 2
0 0 0) ;  )( (          .                (2.42) 

The accurate expressions are obvious in the case of INS: T 1/ 2
0 0( ) )( ) ( 0t s t        

SIN

S t t . In the case of 

S in a first approximation one obtains: T 2
0 ]( ) [ (S t  ) / t   contribution is 

withheld). 

  (only accumulated in time 

velocity vector, theAssuming equal directional probabilities of angular  ratio of SINS error and INS 
error is following: ( ) / ( ) 2 /s t s t    . Constant biases and “slowly” time-varying gyros drifts ( )m t   (2.40) 

in the presence of the object rotation ( 0( ) IB t  ) make a smaller contribution to the orientation error in case of 

SINS ( )s t  than in case of platform INS ( )s t . 

Second example. For “quickly” tim g gyros noises e-varyin ( )t  (2.40) the situation is opposite. There is a 

wide class of stationary noises with zero p  sp
n

ower ectral density in angular velocity ω ( )S   at zero frequency 

0(0) ( 0) ( ) 0S S S         ,                                              (2         .43) 

which are in the first approximation ) don’t lead to INS orientatio
because the dispersion of the random ess integral, which has a noise power spectral density of the form 

n error growth in time. This is obvious, ( 
 proc

(2.43), doesn’t grow in time, when the times exceed correlation time of such process. However, such noises in 
the same first approximation (  ) lead to growth in time of SINS orientation error when object rotates arbitrary 
( 0( ) IB t  ) 
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2 ( ) const;s t 
 

0 2
(0) ( 0) ( ) 0    

( )  .     s

S S S
t t

   
 

       
  

                                               (2.44) 

Derivatives of n-th order of white noise ( )t  are the convenient model fo
the form (2.43) impact to platform INS and SINS orientation error 

r estimation of stationary noises of 

2
( ) [ ] ( ) ( ) [ ] 2

2
( ) ( ) ( ) ( ) ( ) ( 1) ( );   ( )

n n

ω
n n

Autocorrelation functions  and noise power spectral densities 

n n n n n
n n

D
d d

t t k t t S const
dt d

               


.                    (2.45) 

[ ]( )nk  [ ]
ω ( )nS   of n-th order derivatives ( ) ( )

(if they exist) for stationary  with autocorrelation function 

n t  

 process ( )t ( ) ( ) ( )k t t       and noise p

spe

ower 

ctral density ω ( )S   are con  with functions ( )knected   and ω ( )S   by relations [25] 
2

[ ] ( ) ( ) [ ]
ω2

( ) ( ) ( ) ) ( ( );   ( )
n n

n n n
n n

d d
t k t k S

dt
             


( ) 2

ω( ) ( 1) ( )n n n nt t S
d

   ;                 (2.46) 

 

ω ω
1

( ) ( )   ( ) ( )
2

i ik S e d S k e d ; 
 

  

 

        
  [ ] [ ] [ ] [ ]

ω ω
1

( ) ( ) ( ) ( )
2

n n n ni ik S e d S k e
 

d 

 

       
  . 

Here ...  – is ensemble averaging, ( )( ) 0 ( ) 0nt t     .  

ab opes noises of the typ .45) and (2.46) lead to growth in time of INS and 
SIN nta l. Depending on the steepness of spectra (2.45), (2.46) near the zero 

In the sence of rotation the gyrosc e (2
S orie tion errors, which are equa

frequency 2N , orientation errors, which grow in time, are counted starting only with (N+1)-th approximation 

( 1N ) of error KE solutions. This is obvious, because non-stationary random process can be obtained from n 
times differ ed stationary random process, only after integrating it (N+1) times. When N grows the N-th 

effect decreasing in magnitude N , where 1

entiat

 .  
In the presence of rotation, the noises (2.45), (2.46) lead to SINS orientation errors growth in 

approximation (  ) of error KE solutions [11, 17]. 
first 

f such noises to SINS orientation error growths in time as 
diff

In the general case of arbitrary stationary gyroscopes noises, but in particular case of object rotation with 
constant angular velocity, the partial contribution o

usion. The diffusion coefficient depends on module of object angular velocity   in accordance with the 
dependence of noise power spectral density versus frequency (when uncorrelated noises in three channels of a 
three-axis gyroscope with equal intensity) [26]: 

 
2 ( ) ( ) ;s t D t     ( ) [ (0)D S

0
2 ( )];   (0) ( ) ;   ( ) ( )S S S S S            .               (2.47) 

The SINS orientation error dispersion depends only on the magnitude of angular velocit
general case of the arbitrary object rotation, but in particular case of noises in the form of first order derevitive o
the

 

 
y vector, in the 

f 
 white noise [11, 15] 
 

T 2
1 2 1

2
22 2

0 2 0 0
1 2 0

( ) ( ) ( )I   ( ) 2 ( ) .E E s

t
d

t t Q t t t Q d
dt dt            


                            (2.48) 

The sources for noises of type (2.43) in the various gyroscopes are different. In the LG it’s uncompensated 
components of “frequency biasing” of the types (2.45), (2.46) [11, 27]. 

s noises, designed for applications in 
m INS and SINS 

young developers, who were involved in SINS gyroscopes development with no 
exp rience in development of platform INS and gyroscopes for such systems. 

SINS errors equations at the turn of 1979-1980 [28]), was only a “by-
pro

 

 
3. What is “good” and what is “bad” in the terms of gyroscope

platfor
 
This section is written for 
e
Let’s comment manifestation (2.44) of NKE (2.15), which turned out to be surprisingly actual on transition 

phase – from platform INS to SINS.  
The NKE (2.15), which was seen from the first steps of accurate SINS on LG theory construction [11] (on 

the phase of derivation of accurate 
duct” for author and have never been published “for unnecessary”. 
Since the beginning of 1950s, for INS errors analysis [29], and later for SINS, by everyone and everywhere 
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(in the USA, and in the USSR) approximate errors equations (equations in variations [30, 31]) were used, 
inc

37, 38]), and approximation equations in variations (which ignore 

 ap

luding errors KE [32-34], independent of used formalisms. This trend continues to date in the USA [35], and 
in Russia [36]. Therefore, the author’s primary concern was to “restore order” within the established SINS 
theory, – LG were developing for SINS. 

The situation was a paradoxical: in mechanical gyroscopy “nonholonomic error” have long been known (A. 
Yu. Ishlinsky’s theorem “On solid angle” [

these effects of the second order 2  in principle) were used as the errors KE in the inertial navigation theory, 
instead of accurate errors KE [29-31, 39-41]. 

In the study of features for LG plications in SINS, the nonholonomic errors “antithesis” was discovered, 

which is identical in mathematical terms, but opposite on the physical meaning effect of the second order ( 2 ). 
on compensated periodic frequency LG biasing  – N

T
1 1 2( ) ( sin( ) sin(t t        2 3 3 1 2) sin( )) sin cost t c t c t                            (3.1) 

corresponds to fictitious not finitely rotation (when phases i  aren’t equal). – SINS orientation error (in the 

absence of object rotation) growth with speed ( ) / const,s t t    where 1 2 3
2 2       , for equiprobable 

distrubtion of phases i  in range ( ,  ), con ypical p es  = (2-10) arc. 

min, / 2  =(100-500 Hz, effect’s m ni st  (7-700) deg/hr. Accurate KE solution in 

quadr s for rotation with angular velocity ( ticular cases 

1/ 2st (3/ 2) For t

de is 2  

3.1) in par

/8 ). 

con

arameters valu

) ag tu

ature T T T
1 1 2 2 1 2;  0c c c c c c   is known [11]. 

Paradoxically but true: such a “big” in magnitude effect d-order effect 2 ) didn’t allow 
(and don’t allow) to be noticed with throughout used appro variations. 

In the research process of the various LG errors and noises influen n SINS orientation accuracy with 
accurate errors KE, general patterns of accumulation of various LG 

(a ugh it’ltho s secon
ximate errors KE in 

ce o
errors and noises components to resulting 

SINS orientation error were clarified [11, 14]: 
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In the expressions (3.2), (3.3) and (3.4) only the main term of series (2.27) of errors KE solutions was
retained, i.e. the rest of the series (2.27) can be neglect
first type 1) includes many components of gyroscopes errors and noises. For these and only for these errors and 
noi

 and different types 
SIN
develope  of 
the

chnology,  [51]. GSP “drift” was a natural criteria 
of 

 
ed due to smallness in comparison with retained ones. The 

ses it’s possible to limit ourselves by solution of approximate errors KE in variations. The second type 2) 
includes (for arbitrary object rotation) white noises in angular velocity and nonlinear LG errors, caused by the 
lock-in effect in LG [27]. The third type 3) includes periodic errors (3.1) and noises of types (2.43), (2.45). The 
ratio of values for terms of first and N-th orders depends on the type of the object rotation.  

All results of the research of gyros errors and noises influence on SINS orientation accuracy by changing: 
0( ) IB t   turn into research of gyroscopes errors and noises influence on platform INS orientation accuracy. 

Paradoxically but true: only recently, the author noted that the new generation of SINS
S’ gyroscopes (including gyroscopes upgrades developed in 1950-1980 for application in platform INS) 

rs, don’t know the effect (2.15) and can make mistakes due to ignorance of the following effect – one
 most striking manifestation of NKE (2.15). – See Fig. 3.1. 
The result (Fig. 3.1) would have pleased Dr. Charles Stark Draper as an additional argument in platform INS 

benefit to argument described in Part 1. Charles Stark Draper had such a chance, papers [26, 27] were published 
in the English version [43, 44] and were seen by NASA [45].  

And the essence of the matter is following. In 1950-1980s Charles Stark Draper team in USA and V.I. 
Kuznetsov team in USSR were developing command devices complexes, competing in their accuracy, for 
control systems of creating and continually upgrading rocket te

quality (accuracy) of GSP. Therefore, during the improvement of gyros all the errors sources, which lead to 
GSP “drift” were eliminated. And on the elimination of other errors of the gyroscopes that do not lead to GSP 
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, did not pay much attention. In part, because there was no time for this. – It was a hard race for the 
accuracy of the GSP. 1 

 

“Gyros noises with equal to zero power spectral density on zero frequency 

ω ( 0) 0S     don’t lead to significant increase of orientation determination 

error in time for platform INS (second order “smallness” effect), but lead to 

“sm
pretty significant increase of orientation determination error in time for SINS 
(first order allness” effect). The difference of partial contribution of these 
noises to accuracy of platform INS and SINS is in order of magnitude  (in 10, 
100, 1000 and more time) depending on the specific structure of gyro noises 
structure and on form of the object rotation”.  
 

(SRI AP Engineer, 1979-1980, N.I. Krobka)

 

Fig. 3.1. “Byproduct” of accura
basis of accurate errors equations [11] 

 

Fig. 3.2. Learning is never too late to anyone. 
“Live a centure and learn a century”  

(the folk wisdom) [42] 

te SINS on LG theory construction on the 

In the same time, in mechanical gyroscopy has a tradition: determ
 into account hundreds of different im

i
parameter (taking perfection sources pe 
drift”: Х arc. min/min или Х arc. sec/sec. And that, indeed, was enough for G  second-
ord

ne the quality of gyroscopes by “integral” 
, but that doesn’t matter): “gyrosco

SP gyroscopes (up tom s 

er effects). But for SIOS or SINS gyroscopes everything is different. It’s not enough to know only “inegral” 
parameter of “gyroscope drift”. It’s neccesary to know gyroscopes errors and noises structure, because different 
components, firstly, differently accumulate in SIOS error, secondly, significantly depend on the type of object 
rotation, – see (2.20), (3.2)-(3.4). 

Fig. 3.3 and Fig. 3.4. represent Allan deviation ( )  -graphs for two model gyroscopes (No. 1 and No. 2) 
with a priori known (given) parameters of the three noises. Difference only in bias instability magnitude: 10-4 

deg/hr (Fig. 3.3) and 10-5 deg/hr (Fig. 3.4). 
sed 

) compared with two other noises. GSP “drift” would be almost in 
ord

Question: which gyro is better? If gyros are u for the platform INS, then, obviously, second gyro  
(Fig. 3.4) is better. White noise “in angle” contributes in GSP “drift” only in the second order, it can be 
neglected (with relative accuracy ~ 1,8×10-6

er of magnitude less, independent from the form of the object rotation. And in the case of SIOS and SINS 
applications of gyros the answer is not simple – all depends on the specific form of the object rotation ( )B t . For 
the simplicity of explanation, let’s assume that as a result of various efforts (“gyroscope, it’s simple” [52]), a 
                                                 

1 Did Charles Stark Draper or his team of developers in the USA know about existence of the effect (2.15) and its display 
(Fig. 3.1), the author doesn't know. But it is authentically known that "such effect was not ever noticed" from lips of "fathers 
of inertial navigation and inertial targeting" ("leaders of domestic gyroscopy" [46]) as they were called in the USSR and are 
called in Russia, the Academician V. I. Kuznetsov (during the two-hour conversation on October 1, 1986 which took place at 
the initiative of the Chief designer of NPO "Rotor" V. I. Kuznetsov according to the "Midgetman" program and 
modernization of the AIRS block designed by Charles Starck Draper and mastered by Northrop company which has been 
already used in MX IBM, Litton and Honeywell developed navigation blocks based on LG, and the accuracy of LG blocks 
surpassed AIRS accuracy in advertizing forecasts by 10 times [47, 28])) and the Academician A.Yu. Ishlinsky (in a series of 
the meetings which took place at the initiative of A.Yu. Ishlinsky since November, 1993 till May, 1994 [48, 49]). 

In 1991, after security classification removal from subject of LG, some first general-theoretical results of the author on 
strict LG-based SINS theory created in 1979-1981, were prepared in the form of reports on the first international symposiums 
on inertial technology in St. Petersburg [14, 15]. For “public release” of these results (the strict dynamic and kinematic 
equations of SINS errors and researched on their basis regularities of accumulation of LG errors and noise in SISO and SINS) 
the author had to discuss texts of [14, 15] with experts of gyroscopic and inertial technology of team of V. I. Kuznetsov (I.N. 
Sapozhnikov, V.I. Reshetnikov, I.D. Blyumin, M.L. Effa, S.A. Kharlamov). Scientific novelty and practical value of the 
results was confirmed by all experts, approval on the publication of reports [14, 15] was received. But more than others M.L. 
Effa [50] became interested in works [14, 15]. He worked with V. I. Kuznetsov since student years, over time he has become 
the leading developer of all mechanical gyroscopes designed by SRI AM of NPO “Rotor”. At that time M.L. Effa helped to 
start LG production for LG-based SINS – SINS-90 which has been developing in SRI AM and therefore sought to study LG 
features [47]. Mainly, texts [14, 15] were written, specially to bring M.L. Effy up to date on LG and LG-based SINS features 
quckly. In parallel M.L. Effa modernized a spherical floating platform designed by SRI AM [51], similar to modernization of 
the AIRS block by Charles Starck Draper. Therefore first-order effect (2.48) incredibly interested M.L. Effu. He wanted to 
understand: 1) What is the difference in the accumulation of the derivative of white noise “in the angular velocity” (white 
noise “in the angle”) in SINS and platform INS; 2) What causes such difference as such “strong” effect was never observed 
in GSP.  Author needed to explain this matters, starting with strict error KE SINS and platform INS differencies (2.18), 
(2.19). M.L. Effa understood everything and thought: what if it is possible to construct SINS on float-operated gyroscopes, 
which were designed for use in GSP? As a developer, knowing his gyroscopes errors sizes, M.L. Effa made numerical 
estimates and put to the end the discussion of the effect (Fig. 3.1) with his short and capacious, widely known in circles of 
gyroscopes developers in USSR and in Russia, exclamation: “Nothing to yourself!” (Do not confuse with expression: 
"Wow!"). 

 535



new generation of gyroscopist-developers has created gyros (in any physical principles) without bias instability – 
Fig. 3.5, – gyros noise is just a mix of two white noises: “in angular velocity” and “in angle”. For the s licity 
of model let’s assume, that the noises are Gaussian, independent and have equal intensity in three gyros: 

imp

1 2 1

2
T 2

1 2 2 1 2 0 2 0
1 2

( ) ( ) ( );  ( ) ( ) [ ( )]I( ) 0;  ( ) 0    ( )
d

t t t t t Q t t
dt dt

t t D t t                   .         (3.5) 

 “What a good gyroscope!” (Fig. 3.5), – a new generation of 
gyroscopist-developers exclaims. 

Yes, not bad (it’s possible, in principle, to do better [2
(Fi

on (orientation error for 1 hour  

wo

2]) gyros 
g. 3.5), but for platform INS application. Indeed, the GSP “drift” 

on such gyros would be diffusi

uld be 53 10  deg, for 100 hours – 43 10  deg, independent 
on object rotation). Charles Stark Draper would like such gyroscope 
(accuracy exactly corresponds to AIRS unit accuracy after 1 hour, 
and much better after 100 hours): 

2 ( ) 3s t Dt   .                                     (3.6) 

And everything would be principally different in the case of 
SIOS and SINS applications of the

 
 

 such gyros: 
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( ) 3 2 ( )s t Dt Q d        .                      (3.7) 

The ratio of SINS (3.7) and INS (3.6


Fig. 3.3. Allan deviation ( ) 

) orientation errors 
dispersion for arbitrary object rotation 

and has the form: 
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0

)
s

d
 

  





.                      (3.8) 

The numerical values

 

 of the ratio ( ) / ( )s st t      (3.8) are easy 

to evaluate by any gyroscopist-developer   for o
really a developer [53]. For LG [47, 54, 55] such estimates were 
obt yroscopes were

ex . 
The a fere

decided: “I’ll do good and I’ll not do bad”. –

 

wn gyros if one is 

ained. Estimates for some other g  obtained too. 
The author would not be surprised if some of the developers of 
gyros for SIOS and SINS, a quarter of a century later, will repeat 
M.L. Effa exclamation: “Nothing to yourself” Perhaps, some of the 
developers will realize, that about one order of magnitude reduction 
of gyros bias instability (Fig. 3.3 and Fig. 3.4), without reduction of 
the other noises, poet V.V. Mayakovsky had noticed: “In gram 

nt result, as formulated by V.V. Maykovsky: “Joyful boy went and 
 See example in Fig. 3.6. 

 

-graph 
for model gyroscopes No. 1  

 

 
Fig. 3.4. Allan deviation -graph for 

model gyroscopes No. 2 
( ) 

traction, in years work”
uthor had tried to reach a dif

  
Fig. 3.5. Allan deviation -graph 

for model gyroscopes No. 3 
Fig. 3.6. Allan deviation -graph 

for model gyroscopes No. 4 
( )  ( ) 
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4. The task of identifying the structure of noise gyros. The strategy “Gasoline is your, ideas are our”  
 

With methods of researches of noises, including Allan variance [56], the author is familiar since student’ 
years (1973-1979) in the Moscow Institute of Physics and Technology (MIPT) [57, 58] where he had studing 
simultaneously on three specialties: the first – “physical and quantum electronics”; the second – “IBM control 
systems” [59, 60]; the third – “statistical radiophysics”. The practise course (1975-1979) took place according to 
the “Fiztech’ System” at chair of physical electronics of MIPT [61] (1975-1979) in Scientific Research Institute 
of Applied Physics (SRI AP) in which since the beginning of the 1960th LG [62] were developined. And the 
diploma thesis was connected with noises, not LG noises but the optical quantum amplifiers (OQA) noises [63]. 

In the 1960-1970th in the USSR for researches of noises of LG, which were created in the USA (1962) and in 
the USSR (1963) with a half-year interval [64] radio engineering and radio physical methods, and also methods 
of statistical physics and mathematical statistics were used. Research problems of LG noises were the following. 
Based on the results of LG tests: 1) to separate technical fluctuations, which can be eliminated or reduced by 
means of design-technological decisions during LG working off, from “natural” fluctuations – principally 
ineradicable quantum noise caused by spontane s radiation; 2) to estimate precisely the intensity of the 
quantum noise which is determining achievable accuracy of LG; 3) to find out: whether quantum noise of L  is 
white nois  den uantum noise at zero zero  two 
such models). ompass at the set measureme

ou
G

e or the power spectral sity of q  frequency is equal to  (there were
The accuracy of a laser gyroc nt time ( T ) depended on it as follows: 

llan variance [56] has the following form: 

1/ 2T   or 1T  .2 
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 (4.1) 

From the second half of the 1960th the Allan variance method was used in the USA not only for researches 
of noises of the frequency standards (“time”). All the firms which developed LG technology and SINS based on

 (Honeywell, Litton, Singer, Sperry, Raytheon, etc.) used the Allan variance method in the 1960-1980th. In 
the USSR, the Allan variance method in those years in a gyroscopy, including quantum gyroscopy, widely 
wasn't used. But the last 10-20 years, at working off of MEMS-gyros and FOG, the Allan variance method is 
used in Russia wider every year. The author uses Allan graphs since 2007. After the break, which was connected 
with “perestroika”, the Scientific Research Institute of Applied Mechanics named after Academician V.I. 
Kuznetsov (SRI AM) has restored the works on FOG (in 1985-1995, in SRI AM FOGs were investigated in 
parallel with development of LG). The standard [66] already regulated the error model of FOG with 

                                                 
2 At working off of LG the measurements lasting 10000-100000 hours without switching off of devices were taken. The 

 that author, at tim
assistant's responsibility consist
vio

e – the student, had to work part-time laboratory assistant on tests of LG in non-working days. Laboratory 
ed in replacing rolls of tape in recorders (there were no computers in that time) without 

lation of a continuity of measurements. It was impossible to simply look at recorders and not to think of anything else. 
One of methods of research of noise of LG at that time was ( T)   – graph – a standard deviation (SD) as function of time of 
averaging (or time of integration of angular speed, since LG is an integrating gyroscope). Two options of formation of 
statistical ensemble from primary data of one realization are obvious to construction ( T)   – graphs assuming ergodicity 

[65] of a random process. First option: the cycle of measurements with quantity of steps /N T   (   – a step of gathering 
information, T  – duration of measurement) is primary ensemble on which SD ( )   is calculated. Further the data of two next 
steps are summarized (the first from the second, third with the fourth, etc.) and SD )(2   is calculated. And so on for 
receiving SD ( )n  , i.e. ( T)  -graph ( T = n  ) of the first type. With an increase of n ,  the size of the ensemble, obviously, 
reduced /N n . With decreasing the size of ensemble, obviously, the reliability of an assessment ( )n   also decreases. For 
increase reliability of ( )n   it is possible to increase the ensemble size. Why not, if the hypothesis of ergodicity has already 
been accepted? Second option: For calculation (2 )   it is used not only [ / 2]N  elements of primary ensemble (a symbol [...] – 
is function of the whole part), but also additional [( 1N  )/2] elements (if N  – is odd number) or [( 2N  )/2] element (if N  – 
is even number), which are obtained by summation of primary data: second with the third, third with the fourth, etc. Similarly 
for calculation ( )n  , by shifting on n  steps “to the right” the summation of data of n  neighboring steps. In other words: for 
preparation of statistical ensemble for the purpose of calculation of SD ( )n   the da all possible options of sums of primary ta 
of n  steps continuously following one after another are used. Dispersion for the ( T)   – graph of the second type looks like 
the following: 
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where   – is an

 ( )

 angular velocity,   – is an angle of so called apparent turn,  – is a step of gathering information. 
The functional (*) is close to Allan variance [56] (there are three differences) in spite of the fact that it arose from

reasonings. 
 other 
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dete as realized that the author sought at conferences since the early 
1980s from the developers of SINS and gyros intended for SINS on the example of LH [68], realizing that the 
different noises are making a different contribution to the orientation error of SINS. In standards [66, 67] the 
“dynam ” model of errors [68] of gyroscopes for SINS [16, 17] is already required. 

At the end of 2006, working on the request of the Chief designer to analyze the current situation with the 
FOG development in Russia, the author spoke with the FOG designers in Moscow, asking three questions: 1. 
Ho

rmination of parameters of noise. Finally, it w

ic

w many FOGs are there on resource tests? 2. What is the FOG accuracy; what is the averaging time? 3. How 
much does the FOG cost and why? The additional question what the noise structure of their FOGs was caused a 
puzzling question: “What do you mean? Can the noise have a structure? Noise is white!” That was the answer 
the author heard from many Russian FOG designers at the boundary of 2006–2007 (except for the designers 
from Fizoptika [69], who, like the author, passed the school of quantum gyroscopy at the SRI AP in the 1960–
1980s, where LG (1963) [64], and FOG (1975) [70] were created for the first time in the USSR. “The answer is 
not correct!” the author used to answer. “Have a look!” the author offered. No sooner said than done. 

In Fig. 4.1 the autocorrelation functions of noises (of three different Russian FOG, not important, whose 
development) constructed by results of the tests in SRI AM in 2007-2008 [71, 21], are presented. In standards 
[66, 67] there was not such noises of FOGs (Fig. 4.1).3 

 

   

   
 

Fig. 4.1. The autocorrelation function and the correlation coefficients of noise 
for three FOG samples of Russian design (the scale does not matter) built on the results of tests 

 
he statement of the problem for the developmentT  of software and programm-mathematical complex (PMC) 

for identify the structure of noises was more laconic in comparison with the statement of the problem in [48]: 
“Guys! We work further. Let’s develop PMC with the following features: PMC has to: 1) To be able to do all 
(“all” is a keyword here) that was known earlier for identification of noise structure in physics and technology; 
2) To allow you to expand opportunities for the implementation of any new ideas. All the rest is to your taste. 
For any questions contact at any time and ask about details”. 

 
5. The topology of graphs of Allan deviation. Partial contributions of different noises to  – graphics 

 

Basic designations and definitions are following:  – noise power spectral density of noise; 

( ) 

( )S f ( )K   – 

                                 

autocorrelation function; ( )   – Allan deviation.  
The link between Allan variance and power spectral density (in angular velocity) is following 

                

I AM. 

3 During deployment works on FOG in SRI AM in 2007-2008, communicating with young specialists, author with 
surprise understood that the new generation of developers of gyroscopes doesn't understand elementary things: how to define 
gyroscope's noises structure by the results of test and why is it nesessary?; how to define the source of the noise by its type in 
gyroscope's elements and subsystems for the purpose of noise elemination or reduction to improve gyroscope's accurasy? 
 how various gyroscope noises accumulate over time in SISO and SINS errors?; which noise components are more crucial in 
concrete applications regarding influence on orientation, navigation and control systems accuracy, for which the concrete 
gyroscope is designed?; what is the difference between white noises “in angle”, “in angular velocity” and "in angular 
acceleration" regarding influence of these gyroscope noises on the accuracy of systems for which these gyroscopes are 
designed?; how numbers X1, X2, X3, X4, X5, X6 are interconnected regarding accuracy: X1 arc. sec/sec., X2 arc. min/min., 
X3 deg/hr, X4 deg/day, X5 deg/month, X6 deg/year; whether it is possible to define numbers X1, X2, X3, X4, X5, X6 if the 
seventh number X7 – SKO of an angular velocity determination error during measurement of 100 seconds is known? After 
seeing (Fig. 4.1) and hearing the answers it became clear – everything should be started almost “from scratch”, – today it is 
simply not taught in any of those institutions whose graduates come to SR

In an initiative order three informal groups were created. The first group (Y) consisted of everyone who was interested in 
dealing with noises; the second group (Z) consisted of postgraduates; the third group (X) consisted of students whom the 
author coached for research work as a mentor. Work with all groups was realized on the base of strategy “Gasoline – your, 
ideas – our” [72]. Today each developer in SRI AM knows: 1) noises of gyroscopes are not white but are represented as a 
mix of different noises; 2) how to understand which types of noises there are in the mix using Allan deviation ; 3) how to 
assess the upper estimates of bias instability and angle random walk. 

Group X knows and can much more. 
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N – is the angle random walk (ARW) coefficient [67]: 
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where f0 – is the cutoff frequency, Ci – is the cosine-integral function, .x f    K – is the rate random walk 
(RRW) coefficient [67]: 
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Exponentially correlated (Markov) noise (M) [67]: 
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 – is the amplitud  of M v noise  – is the correlation time of Markov noise. 

Harmonic perturbation (“sinusoidal noise”) [67]: 
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1) the quantization noise  e angle random walk (ARW) 3) the2) th  rate random walk (RRW) 

   
4) the rate ramp (RR) 5) the bias instability (B) 6) Markov noise (M) 

Fig. 5.1. The topology of  – graphs of Allan deviation of the “basic” noises provided by the standard [67]  ( ) 
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In Fig. 5.1 the graphs of Allan deviation of the noise provided by the standard [67] are presented. These 
graphs were simulated by PMC (the developer of the software of this subsystem of PMC – A.I. Bidenko). 

The topology (analysis situs [73]) of  – graphs of Allan deviation of the noises is presented in Fig. 5.1. 
It is rather simple and clearly. Four noises: 1) the quantization noise, 2) the angle random walk (ARW), 3) the 
rate random walk (RRW) and 4) the rate ramp (RR) are one-parametrical. Change of the corresponding 
parameters leads to parallel shift of graphs of Allan deviation “up” or “down” (Fig. 5.1). Two noises: 5) the bias 
instability (B) and 6) exponentially correlated (Markov) noise (M) are two-parametrical. Change of parameters 
of these noises leads to two-parametrical “deformation” of graphs of Allan deviation (Fig. 5.1). For n-
parametrical noise the topology of graphs of Allan deviation depends on n of parameters, in particular, on 3 
parameters for three-parametrical noises. 

The resulting  – graph  Allan deviation of the mix of statistically independent noises depends on the

partial llan devia rly: 

.                                                            (5.9) 

In Fig. 5.2 the  – graphs of Allan deviation of harmonic perturbation (“sinusoidal noise”) provided by 
the standard [67], simulated by means of PMC, are presented. 
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Fig. 5.2. The topology of ( )   – graphs of Allan deviation “sinusoidal noises” provided by the standard [67] 

Here it is pertinent to explain the following. Despite the used dispersion symbol 2 , Allan variance 2( )    
[56] isn't the dispersion. Allan variance is a statistical moment of the second order, – the “average square” of 
some value, averaged on ensemble depending on parameter   (4.1). Therefore in Allan variance and in ( )   – 
graph of Allan deviation not only random processes (noises), but also any determined (not random) processes 
(exc ake ept constants) m contributions. 

Why the author for an assessment of influence of noise of gyroscopes on the accuracy of orientation of SINS 

uses the functional 2.33) instead of dispersion 2 ( )2 ( )s t   ( s t  (2.32) is explained in item 2. It is a consequence 

of rotation in three-dimensional space. Why D. Allan in a one-dim
prese persi
“m v

ncy and a phase of standards of the frequency 
(“ti e”). The “drift” of a phase for this or that interval of time irrespective of, this drift is caused by stationary or 
non-stationary random processes or the determined processes changing in time is important for standards of 
“time”.  

In gyroscopy there is a close situation, but a bit different. Not only such errors and noises in the angular 
velocity (analog of frequency) which lead to an error of an angle of the seeming turn (analog of “drift” of phase), 
but also such noises in the angular velocity which, though don't lead to growth in time of an error of the angle of 
the seeming turn, but lead to growth in time of an error of an angle of the valid turn are important. It is a 
consequence of not commutativity of rotations around a point (but not around an axis). In platform INS there are 
such effects of the second order, in SINS there are such effects of the first order. 

For identification the structure of noises of gyroscopes more detailed tools, than for identification of structure 
of noises of frequency and a phase in standards of “time”, namely, for identification the structure of noises of 
gyroscopes type (2.43), (2.45) are necessary. For the accounting of fl e scales” on 
accuracy 
“time” rds of 
tim

OG

ensional case where such problems aren't 
nt, uses not dis on, but only a mean square (the second moment) of a scalar random variable without 

inus the square of a erage value”? – Questions to D. Allan. But one aspect is obvious. The Allan variance 
method was developed for researches of fluctuations of freque

m

uctuations of onboard “tim
of SINS (and INS) information of noise structure not only of “time” (phase) and first derivative of 

(frequency), but also the second derivative of “time” (the first derivative of frequency of standa
e) are needed [74]. 
In Fig. 5.3 the graphs of Allan deviation, modified Allan deviation and Hadamard deviation created by the 

Alavar 5.2 program are submitted. The file with primary information of laboratory tests of four-axis F  is 
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used. But instead of the data in columns with information of four FOG channels, the numbers in column No. 1 
with sequence of counting: 1, 2, 3, etc, is used. In other words, the graphs in Fig. 5.3 correspond to the function 

(

identi

t  time). The graph of Allan deviation is a ray of a straight line with an inclination +1, the graph of Hadamard 

deviation is a ray of a straight line with an inclination 0 ( cal to 1), as well as has to be. To functions 2t  and 
3t  correspond the graphs of Allan deviation also in the form of ray of a straight line with an inclination +1, but 

with shift of the beginning of a ray. 
 

Naturally, the author explained this property of Allan 
variances to reflect a contribution not only noise, but also any 
determined functions of time (except constants) for group Y 
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MDEV
HDEV
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AlaVar 5.2
Allan STD DEV
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
    1    10   100  1000 10000
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   10
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and offered when developing the software to provide the 
creation of graphs, corresponding not only to variances 
(Allan, Hadamard and for the n-order differences methods 
[75]) but also corresponding for dispersions (Allan, 
Hadamard and for the n-order differences methods [75]). 
“But graphs for dispersions can differ from graphs for 
variances” – realized the group Y. “Can. And not only can, 
but sometimes and will be”, – the author specified. “But then 
graphs for dispersions  is necessary to distinguish somehow 
from graphs for variances” – realized the group Y. “It is 
exact” – the author agreed. “Then it is necessary to call them 
differently” – realized the group Y. “Call them as you like. 

 

The main point is not in the name”. Since then developers of 
SRI AM call the expansion of variance to dispersion: “Allan-
Krobka dispersion”: 

2 2 2 2
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(5.10) 

Analogically, “Hadamard-Krobka dispersion”: 
2 2( )    ( )H HK     .  

As for the names of dispersion for different n-order 
methods [75], the author has not heard. The author did
But, if David Allan doesn't object, and Nikolay K
such in the future and outside of SRI AM  with
bring benefit for identification of noises. 

Physical intuition suggests that the use of two
enhance the ability to identify the structure of the n
 
6. Typical misconceptions and blunders in th
parameters of noises of gyroscopes based on 

 
Fig. 5.3. The graphs of Allan deviation, modified 

Allan deviation and Hadamard deviation 
created by the Alavar 5.2 program on the base of the 
first 75000 natural numbers: 1,2,3, …, 75000 

n’t use such names, because the essence is not in the title. 
robka won't object if these generalizations will be called as 
 one condition: if use of dispersions along with variances will 

 functionals type (5.10) simultaneously, can, in some cases, 
oises 

. But

4. 

e interpretation of noise structure and the estimates of 
)(   – graphs of Allan deviation 

 
The first example ("two in one").  
Of the many well-known publications, which d

of gyroscopes based on graphs of Allan devia
[79]. The choice of this report namely is made, fir

                                                

id not correctly assess the structure and parameters of noises 
tion, let’s choose as a bright example, the report of 2007-year 

st of all, because it contains half of the “bouquet” of common 
 ( )  -

 
4 Two examples from author's practise to double the 
1) If the angular velocity vector in general case of  is set only in the rotating basis or only in 

immovable basis, then KE (2.2) nobody managed to integrate in quadratures more than 250 years – from the moment of 
creation of kinematics of rotations by Leonard Euler. And if to use at the same time two representations, pair 
integrated in quadratures [76], and without of tegration [77]. Simultaneous information can be received by using g
S 78]. 

, 22] wh
ata, gr

avitational acce ation in “regular” algorithm is precisely 

volume of initial information:  
 arbitrary object rotation

KE are 
yros of in

INS and platform INS, stabilized in inertial space [
2) The new algorithm of inertial navigation [19 ich is following: in regular algorithm of calculation the trajectory 

avitational acceleration isn't used completely, but the accurate 
ler

of object, based on accelerometers and gyroscopes d
error equations are used. The unaccounted contribution of gr
considered in the solution of the accurate error equations. Thus both the “regular” algorithm and accurate error equations are 
linear and are integrated in quadratures. As a result the valid trajectory of object is expressed in quadratures without the need 
to integrate nonlinear differential equations [19, 22]. 
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misconceptions and blunders in the interpretation of ( )  -graphs of Allan deviation formulated in the 
Introduction. Secondly, it is one of the few reports at the Saint Petersburg International Conference on Integrated 
Na

logic of estimating the parameters of the noise of 
e gyroscope reading literate English text [79] (excep an unfortunate typo in the title of the report: 

cal Bauman, with honors, 1998; 
Uni ersity of Illinois, Urbana-Champaign, USA, a Ma  of Science, 2001; University of Calgary, Canada, 
PhD a minimum am ony, because it is not the worst universities in 
Ru

nei

vigation Systems, written by Russian authors, first in English and then translated into Russian. Therefore, 
anyone who can not read in Russian will be able to evaluate the 

t for 

ster
ount of ir

th
“Coliolis” instead of the “Coriolis”). Thirdly, since one of the authors who wrote the text [79], has three higher 
technical education: the Moscow State Techni University named after N.E. 

v
, 2005 [80], it is possible, with 

ssia, USA and Canada, to conclude: “Allan variance method to identify the structure of the noise of gyros 
competently do not teach ther in Russia, nor in the USA, nor in Canada”. 

So. Following the “iron logic” of the classic anecdote [81] (up to isomorphism [82, 83]): “If the box is 
square, it means something in it is round. If it is the round, then it is orange. If the orange, then it is orange!”, the 
action takes place in three acts [79]. Act One: Enjoying the ( )  -graph of Allan deviation (Fig. 6.1). Act Two: 
Compare the graph (Fig. 6.1) with the graph in Fig. 6.2. Act Three: Determine (what could be easier?) the value 
of N (the angle random walk (ARW) coefficient) and the value of B (the bias instability (B) coefficient) by 
comparing graphs on Fig. 6.1 and Fig. 6.2. Specific considerations [79] presented to quote in Fig. 6.3 

 

 
 

 

Fig. 6.1. Allan ( )  -graph,  
built according to the testing MMG "AIST-100" [79] 

 

Fig. 6.2. Schematic representation of the resulting Allan 
deviation [79, 84], which introduced many astray 

 

Random drift corresponds to the slope – ½ (see Fig. 6. We find on the graph (Fig. 6.1) the slope – ½. Is it 
logically? See again Fig. 6.1 and Fig. 6.2. It is logically! We seek in the segment with a slope of – ½ point from 
which the perpendicular to the horizontal axis passes through the point 1 sec. (In this, to the authors of the report 
[79] were just lucky. There is such point on Fig. 6.1). Ne g. 6.3. 

 

2). 

xt, see Fi

 
 

Fig. 6.3.  The quote from the report [79] in the analysis of the parameters of the noise on the basis of Allan graph (Fig. 6.1) 
 

What are the misconceptions and mistakes? This is obvious to a triviality. Firstly, from the graph in Fig. 6.1 
can not be determined not only the magnitude of the angle random walk, but even its presence in the mixture of 
noises. The maximum that can be done is to accept the hypothesis (it is believable, basing on the experience) that 
the white noise in angular velocity exists and estimate an upper its magnitude. See Fig. 5.1. Line segment with 
slope – ½ in Fig. 6.1 can be associated with the contribution of a Markov process in Allan -graph, but not 
ang  slope of hrough the 

us, it is possible to determine (by known algorithm [66]) the 
ass

( ) 
 – ½ passes tle random walk, which partial contribution to the ray (not segment) with a

leftmost point of Allan  graph. – See again Fig. 5.1. For the upper estimate the value of N it is necessary through 
the leftmost point of Allan ( )  -graph to carry out the ray with tilt – ½ (See Fig. 6.1). If such ray crosses the 
Allan ( )  -graph, the ray needs to be displaced below (by parallel translation) to contact with Allan ( )  -graph 
in one point. On the base of the ray, constructed th

essment of N (the upper assessment). Even visually ("approximately") from Fig. 6.1 it is visible that the upper 
assessment of N is less than 0.085 deg/hr1/2 [79] (Fig. 6.3) approximately in (10–20) times. Besides, owing to 
effect of “summation” (4.8) N is less than upper assessment, at least, in some times. Visually from Fig. 6.1 
(taking into account the experience), N is estimated in the range (0.006–0.001) deg/hr1/2. The bias instability 
coefficient B on the basis of the graph (Fig. 6.1) taking into account the graph (Fig. 6.2) is determined in [79] by 
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a tangent arrangement to the minimum value of Allan ( ) 
0,664

( )

-graph (Fig. 6.1). First, if to follow the “logic” of Fig. 
6.2, it would be necessary to consider coefficient 1/  [66] (see Fig. 6.4). But in the presence of mix of 
noises, the tangent to the minimum value of Allan  

noise
ent based on 

-graph, as a rule, gives the overestimated assessment. In 
Fig. 6.5 and Fig. 6.6 the examples of two mixes of s are given. These examples demonstrate that the real 
bias instability coefficient B is less than its assessm a tangent to local a minimum of Allan 

 
( )  -

sinterpreted

graph respectively in 4 times and in 20 times. 
     

ors of the report [79] sincerely mi  Auth
regarding interpretation of Allan ( )  -graph (Fig. 6.1) since 

ore

 nam

they were mistaken in estimates of precision characteristics 
of their gyroscope “not in their favor”. From Fig. 6.1 it is 
obviously that precision characteristics of MMG "AIST-100" 
[79] is significantly better:  coefficient N is not 0.085 
deg/hr1/2, but no more than (0.006-0.001) deg/hr1/2; 
coefficient B is not 2.5 deg/hr, but no m  than 1 deg/hr. 
These improved estimates can be improved still, analyzing 
primary data. 

This help the author makes for O.A. Mezentsev – the co-
author of the report [79] in gratitude for that that ely he 
in 2007 told the author about the existence of program 
Alavar 5.2 in the Internet. 

The second example – the report of 2012-year [85]. That 
FOGs of the leading developers have long-term stability ~ 
0.0001 deg/hr doesn't raise doubts. Estimates follow from 
Allan ( )  -graph submitted in Fig. 6.7 for iXblue FOG 
(As 200): the bias instability ~ 4х10

 
 

Fig. 6.4. Contribution of bias instability in Allan 
( )  -graph 

 

trix -5 deg/hr, the angle 
random walk ~ 2х10-4 deg/hr1/2. Only for LG is “offensive” 
since in the report [85] as comparison of FOG and LG the 
level of accuracy of modern LG is specified (0.01-0.003) 
deg/hr. Apparently, the author of the report [85] didn't notice 
that LG accuracy level: the bias instability – less than 0.  0001
deg/hr; the angle random walk – less than 0.00001 de , g/hr1/2

instability of scalefactor – less than 0.01 ppm was reached in 
LG on different schemes DILAG in the USA slightly earlier Fig. 6.5. 4-fold difference 

B value, compared with the estimate 

 

year of the publication the book [86], and in the  People's
Republic of China – a bit later. But an essence is not in it. In 
the text of the report [85] there is not Allan -graph. But ( ) 
in presentation of the report [85] Allan raphs were ( )  -g
presented (Fig. 6.7 and Fig. 6.8). We sh phs all use these gra
for explanation one more typical ption in misconce
interpretation of structure and an assessm parameters ent of 
of noises. We shall explain the “screen” n the -effect whe
white noise in angular velocity is screen ribution of ed by cont
Markov process with small time of correlation om Fig. 6.8 . Fr
it is visible that in the left part of Allan -graph there is ( ) 
“logjam” or typical for FOG “hump” (or several “humps” as 
it is in Fig. 6.8). What is it? Obviously, it is partial 
contributions of Markov processes with small times of 
correlation.  

We shall explain in details by means of Fig. 6.9 and Fig. 
6.10. In Fig. 6.9 Allan ( )  -

 the num
graph of noises of FOG of JSC 

NPK Optolink OIUS 1000 is presented. In Fig. 6.9 the dimension [τ] is ber of cycles of FOG output; 
frequency of output is 100 Hz, the dimension [ ( )  ]

g. 6.10. Bu
elation. 

m

Fig. 6.6. The difference is 20 times 
B values, compared with the estimate 

 

 is deg/hr. The uppe ssment of angle random walk is 
4×10-4 deg/hr1/2. What is the real angle random walk coefficient? ble to reduce the upper 
assessment? Yes, it is possible. – See Fi t for this ry to know parameters of 
Markov process – amplitude and time of corr It is possible to arrive re simply, by changing the time of 
correlation of Markov process with the aim to ove the “hump” on Alla

r asse
Whether it is possi

purpose it is necessa
 mo
n ( )  -graph to the right. No sooner 

said than done. For the first time such type target experiment was made by NPK Optolink Ltd. 
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In Fig. 6.11 and Fig. 6.12 the result of target experiment – Allan ( )  -graphs based on results of tests of the 
ncy of output 2000 Hz is presente he only change which 
arameters of Markov process were changed with other things 
me Alavar 5.2 program. 

same FOG OIUS 1000 (No. 12020) with a freque d. T
was made for the “purity of experiment”, – only p
being equal. Primary data were processed by the sa

 

  
 

Fig. 6.8. Photo of the presentation of the report [85] 
 

Fig. 6.7. Photo of the presentation of the report [85] 
 

 

  0,0004 deg/(h)1/2

1 h

 
Fig. 6.10. The partial contribution of Markov noise 

in Allan ( )
Fig. 6.9. Allan ( )  -graph of noises  

of FOG OIUS 1000   -graph [67] 

  
00 Fig. 6.12. Allan ( )  -graph of noises of FOG OIUS 1000 Fig. 6.1 G IUS 10

(o process) 
1. Allan ( )  -graph of noises of FO

ption No. 1 of parameters of a Markov 
 O

(option No. 2 of parameters of a Markov process) 

bvious: upper estimate o e white noise of FOG reduced by 
three orders of magnitude. Indeed, from ( )  -graph in Fig. 6. 11 the upper estimate is as follows: 

 

 
 

From the graphs in Fig. 6.11 and Fig. 6.12 it is o f th

 
 1/ 2

3
1/ 2 1/ 2

51 1
10

63600 2000 600 20

  


 [deg/hr1/2]. 

From ( )  -graphs in Fig. 6.12 the upper estimate is as follows: 

   
   1/ 2 1/ 2

6 62 5 50,002 0,002
10

1/ 2 1/ 2
10

6 33600 2000 600 20

 
 6   


< 10 [deg/hr ]. 

So. Level of white noise of FOG of the Russian development is less than 610

1/2

 deg/hr1/2 and not inferior to the 
best samples of FOG of the leading developers [87, 88]. More exact estimates (still reducing the abovementioned 
esti ate) of real level of white noise of FOG will be published soon by the developer – RPC OPTOLINK Ltd. 
Visually (according to graphs in Fig. 6.10 and Fig. 6.12): ~ (10-7-10-8) deg/hr1/2. 

This help the author makes for H.C. Lefevre in connection with his report [85] and for all FOG developers. 

m
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The author equally well applies to LG, FOG and new quantum gyros [89]. Why is that? 5 
The third (and the last) example – in many reports real noises of various sensitive elements the authors try to 

spread out on the base of five known noises which make a partial contribution in Allan -graph with slopes: 
–1, – 1/2, 0, +1/2, +1 (Fig. 6.2). What it is possible to tell? It is obvious that other noises existing in mix (except 
these five) are converted into uncertainty of estimates of parameters of five “basic” noises. What to do, – under 
the lamp, really, is lighter. 

( ) 

But it is possible to work differently, – systematically study noises to find new types and bring them in 
“basic” noises for error models of the corresponding sensitive elements. 

 

7. Allan variances and Allan -graphics for new, previously not considered, types of noise 
 

( ) 

Allan variance (4.1) can be calculated for any temporary row, but on the basis of (5.1) analytical expression 
is possible to calculate only for such types of the noises which are given by the power spectral density of noise 
for which the integral (5.1) converges. 

In table 7.1, Allan variances for three infinite (calculating) sets for new (unaccounted in the IEEE standards 
on gyroscopes) noises with spectral density of power noise which are equal to zero at a zero frequency are 

presented. The existence of a symbol of imaginary unit i  ( 2 1i   ) in two of three formulas for real functions 

shouldn't mislead. See the prompt from L ard Euler: e 1i   . eon
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5 First, in October, 1975 at the excursio  SRI AP, preceding distribution of third-year students (M

FFKE) to “base” laboratories, the author saw e with his own eyes various models of LG, som
n in IPT group 355 
 for the first tim e of which were 

mastered in mass-produced and accepted to operate on various objects (earlier A) and various model samples 
of FOG which were developed for some years. The author gave advice the r already the third-year Fystekh 
student, already something understanding in physics) to the FOG developers of SRI AP: "Use the solitonic mode in FOG. 
Dis of so ". No, the author doesn't mistake with dates. The 
author perfectly knows that there was half a year before first publications concerning FOG [90]. And the first published result 
[90] was trivial: the interferential picture from the laser radiation missed through 10 m ter piec efore 
at youth conferences to which (after the report [89]) invite, the author isn't tired to speak  you have 
received a result, – publish it! Don't shelve! I am a witness myself of USSR lost a world priority in creation of FOG. And 
don't follow my example; I can publish results 10 years, and 20 years, and 30 years [91] and even 40 years later [48]". And 
tod

f 
diff e 
FO him: "Nikolay! Have 
you not been taught at physical faculty how to solve problems [7]? Stop torturing yourself, make all from one piece of fiber". 
The all-fiber technology of FOG really took place. Such technology also was invented by Physics and Technology faculties 
mes

than in the US
n (of cou se, 

persion litons in fiber is minimum. Receive the best stability of zero

e e of the light guide. Ther
: "Dear colleagues! If

ay – 35 years later. 
Secondly, in August, 1979 to the author, already young engineer, it was necessary to work at one table in laboratory No. 

69 of SRI AP with Nikolay Glavatskikh – a young engineer too, the graduate of physical faculty of MSU. On the one half of 
a table the author tried to integrate error KE of SINS (2.19) in quadratures [7] that one formula would be able to consider a 
contribution of any noise (any gyroscope) to an error of orientation of SINS and not to consider commensurable deposits o

erent noise in the first and any n-number order (2.22). On the second half of the table Nikolay Glavatskikh assembled th
G model according to some new optic-physical scheme. He had no equipment. The author advised 

smates in SRI AP (nowadays as a part of Fizoptika), and Honeywell in the USA. 
Thirdly, results of the theory of SINS based on LG [11] are automatically transferred to the theory of SINS on FOG and 

other gyros. 
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Allan variances and asymptotics of Allan deviation for some special cases of the noises are presented  
in table 7.1. Allan variance and asymptotics of Allan deviation for other type of noise are ented in table 7.3. 

 
pres
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Graphs of Allan deviation for several new types of noises are su
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Fig. 7.1. Graphs of Allan deviation for several new types of noises 
 
Conclusions 
 

In the first part of the report it is strictly and visually shown: 
 the kinematic error equations of the platform INS and strapdown INS are essentially differ; 
 the wide class of noises of gyroscopes which make a contribution to “drift” of GSP only in the second 

order (therefore – “small”), leads to an error of orientation of SINS in the first order (therefore – “big”) 
– one and that concrete noise of gyr scopes leads to different SINS orientation errors, depending on a 
type of rotation of the object (except white noise in angular velocity); 

 at one and that rotation of object, different noises are making different contribution to SINS orientation 
error; 

 minimum necessary information about the noises of the three of gyroscopes is a correlation matrix of 
noises, at acceptance of a hypothesis about Gaussian statistics of noises; 

 significantly more “thin” identification of structure of noise of gyroscopes is necessary for the 
gyroscopes intended for application in SINS in comparison with application of gyroscopes in GSP, 

In the second part of the report there are three ideas:  
1) Allan variance method is an effective method for identification of noise. The undoubted advantage of a 

method is the “infrastructure” which is developed in details for half a century [92-95] – justification of a method, 
the technics – graphs of Allan deviation, the software, IEEE standards with use of Allan variance method.  

2) Allan variance method, as well as any other method, it is necessary to study that is given only by practice. 
And if to use a method because it is “fashionable”, without understanding an essence, it is possible to do many 
ridiculous mistakes.  

3) The following step in study and development of Allan variance method (and its generalizations [21]), from 
the point of view of the author for the noises of gyroscopes, it is  systematic research of noises, elaboration of 
error models, including taking into account new noise types for various gyroscopes. 

o

The team of designers led by the actively working father of the Russian gyroscopy and inertial navigation 
technology, intended for marine and oceanic applications rather than space and rocket ones, the Academician 
V.G. Peshekhonov will probably offer some other promising ways of developing methods for identification of 
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the structure and parameter estimation of noise in inertial sensors. This team has laid a substantial scientific and 
technical groundwork in the field of nonlinear filtering [96–99]. 

 
The author is grateful to the closest pupils for the operational help with preparation of separate fragments of this report 

for the "round table" ICINS-2015. A.I. Bidenko, at the request of the author to help him with creation of graphs, has 
transferred all requests to the programm-mathematical complex (Fig. 3.3-3.6, 5.1, 5.2, 6.5, 6.6, 7.1). N.V. Tribulev, at the 
request of the author to help him to choose tabular integrals [100] for which the integral (5.1) converges, first of all in cases 
(2.43), has prepared tables (7.1-7.3), has checked them with program "Mathematics" and simultaneously has added by 
means of this program some formulas for Allan variance which didn't follow from tabular integrals [100].  

"The teacher, prepare pupils that was at whom then to study!" 
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Abstract 
Key words: sensor errors; parameter identification, Allan variance  

 
The paper discusses the relationship between Allan variance and error variance of sensor bias estimation obtained by 

averaging over a certain time interval. Allan variance is shown to coincide with this variance in some cases. Thus, Allan 
variance plots can be used to predict the accuracy of bias estimation, which is critical for the sensors whose signals are 
integrated in inertial systems. Improving of bias estimation accuracy using nonlinear filtering methods is discussed. 
 
 
Introduction 

 
Identification of sensor error model and determination of its parameters form an important problem to be 

solved by tests and calibration. Traditionally, algorithms for determining the spectral densities and correlation 
functions are used to design the model of error random components [1-6]. Allan variance method is also 
extensively used [7-13]. New methods are searched for, based, for example, on nonlinear filtering methods [14-
17]. Determination of time-invariant error components (random bias) is also important, especially when the 
signals of sensors incorporated in IMUs are integrated and thus lead to accumulation of errors. Bias is often 
determined by usual averaging of sensor errors over a finite time period. Then the question arises, how the 
averaging time should be rationally selected so that for example error variance of the obtained estimate be 
minimum. On the other hand, the estimate obtained by averaging obviously will not be optimal (in terms of 
minimum error variance) if nonwhite noise components of sensor errors are present. Therefore, bias estimation 
accuracy can also be improved by using more advanced algorithms which are not reduced to simple averaging 
but account for the additional error components. As is known, Allan variance is insensitive to the presence of 
bias, since error increments rather than errors are used to calculate the Allan variance. However, Allan variance 
plots are still used to estimate the so called bias instability [18, 19], which is actually associated with the problem 
of estimating the random bias. Discussion of these issues is given in the paper. 

 
Estimation accuracy of the sensor bias by averaging. Connection with Allan variance 

 
Let the sensor error z t( )  be measured, which can be described in the form 

( ) ( );y t c z t             (1) 

where  is a nonstationary zero-mean random process, c  is the random bias. It is required to estimate c using 

measurements . This kind of problem often occurs in sensor calibration performed at the test bench or in 
comparison of their signals with a reference more precise sensor. It is often solved by simple averaging of the 
measured error over finite time interval , i.е. 

( )z t

y t( )



0 0

1 1
ˆ ( ) ( )c y t dt c z t

 

   
   dt

                                                          

.        (2)  

 
1D. Sci., Professor. Head of Scientific and Educational Center, CSRI Elektropribor. 
2 D. Sci., Professor. 
3 Postgraduate. 

 551



Obviously, the following can be written for the estimate error and its variance: 

  
0

2

2

0

1
ˆ ( ) ,

1
ˆ ( ) .

c c z t dt

M c c M z t dt

 

      
 


  

















.    (3) 

Considering variance (3) to be the variance of increments of process 
0

1
( )z t dt



   and denoting 

* *1
( , ) ( )

t

t

z t z t dt


 





, we get 

     2ˆ ( τ,τ) ( , τ)M c c M z t z t     2
.    (4) 

Assume that the following limiting relationship holds true:  

   2 1 1
ˆ lim ( τ,τ) ( , τ)

2

T

T
T

2
M c c z t z t dt

T 


    ,   (5) 

meaning that calculation of mathematical expectation in (4) can be replaced with time averaging for one sample.  
It can be easily seen that (5) coincides with the Allan variance [6, 8, 23]. Therefore, Allan variance coincides 

with the error variance of bias estimation calculated by averaging if (5) is valid for process ( , )z t  . Then 

optimal averaging time can be determined by Allan variance minimum point, and thus, corresponding minimum 
error variance of bias estimate found by averaging. Respectively square root of the Allan variance also called the 
Allan deviation [8,9,11] is the same as the root mean square (RMS) for the bias estimation error. The established 
relation seems helpful because it lets assess the accuracy of bias estimation by Allan variance plots insensitive to 
bias. 

Consider an example. Let    
y t x t v t  ( ) ( ) ( ) ,         (6) 

where x t( )  is the random walk (Wiener process) set in the form x qw , 0 0x ( ) ; ,  are independent 

zero-mean white noises with power spectral densities (PSD)  and 

qw v t ( )
2q 2 , noises ,  have unit PSDs. In 

other words, process  is a sum of random walk and white noise. Searching for estimate in the form (2), we 
can write:  

w t( ) v t( )
y t( )

0 0

1
ˆ ( ) ( )c c x t dt v t dt

 




  
   .             (7)  

It can be easily seen that the following relation is true for estimate error variance:  

  
2 2

2 2
2

2 2
0 0 0

ˆ ( ) ( ) .
q

M c c M w t dtdt M v t dt
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

    
            
      

  
 

       (8) 

Note that squared first and second integrals of white noise are under the signs of mathematical expectation in 
(8). Therefore, these mathematical expectations determine the variances of the first and second integrals. Using 
the known expressions for these variances [6], we obtain the expression 

  
2 2

22 ˆ
3c

q
M c c 

 
    


,    (9) 

coinciding with the Allan variance for the sum of random walk and white noise. Differentiating (9) with respect 
to  and setting the derivative equal to zero provides optimal (in terms of minimum variance) average time and 
corresponding minimum estimate variance:  



3
opt q


  , 2

(min)
2

3
c

q



  .     (10) 

Therefore averaging time optimal in the given sense is directly proportional to the square root of the ratio 
between white noise PSD and PSD of generating noise of random walk, and error variance is directly 
proportional to their product.  
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This example is illustrated by the simulation. Figure 1 shows real bias estimation RMS error calculated using 
500 samples for six various time intervals vs Allan deviation for one sample. Note that the calculated from finite 
length sample AV is the estimate the true AV (5). This explains the incomplete match graphs in Figure 1, 
especially for large averaging time. 

 
 

 
 

Fig. 1.  Real RMS: bias estimation by averaging (left) and Allan deviation (right). 
 

Note that the location of Allan variance minimum point in this statement depends on the ratio between PSDs 
of white noise and generating noise of random walk, as follows from (10). This is also illustrated in Fig. 2 
showing Allan variances for four variants of error components 

11 1 1 12 1 2 21 2 1 22 2 2(t) (t) (t); (t) (t) (t); (t) (t) (t); (t) (t) (t)y x v y x v y x v y x v        , 

where  
1 1
(t) (t)x q w ;

2 2
(t) (t)x q w .  

 
 

Fig. 2. Allan variance for sum of white noise and random walk of PSDs 2 2
1 2
 , ,  and  respectively 2 2

1 2
q q,

 
Standards [18, 19] introduce the stability as “a measure of the ability of a sensor performance coefficient to 

remain invariant when continuously exposed to a fixed operating condition”. Note that no quantitative measures 
determining this ability are given. Let us discuss the possibility of introducing such quantitative measure for 
random bias of sensor error model (1). Obviously, in this case, the bias non stability is determined by the PSD of 
random walk generating noise q . In [9, 10, 18, 19] the minimum of AV plot is used to characterize bias 

instability in assumption that it is the flicker noise PSD. As follows of the aforementioned results, the AV may 
have an extremum in the absence of flicker noise in the error model. Thus the quantitative measure of stability 
depends on the model. For the model (1) the maximum averaging time leading to an increase in the bias 
estimation accuracy, and the corresponding RMS can be considered as the bias stability characteristic as well. 
However, these values also depend on the white noise PSD (as shown in Fig. 2) and does not consider the 
possibility of bias estimation by other methods, which are discussed below. 
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Improving the accuracy of bias estimation using nonlinear filtering 
 
As mentioned in the Introduction, [15, 16] propose an approach based on nonlinear filtering for 

identification of sensor error models. Its idea lies in finding an optimal Bayesian estimate of composite filter 
including the state subvector of shaping filter of the studied process and the subvector of unknown parameters 
specifying this shaping filter. Following these references, formulate the statement of bias estimation problem 
with inaccurately known parameters of measurement error models. Introduce a composite vector 

, where , , then nonlinear filtering problem in discrete form can be 

written as  

Т
T
i i

x X    , T
i i

X x c [ , ] Tq  [ , ]

1

1

1

1

= ,
i i i

i i

i i

i i

i i i i

x x q tw

c c c

q q q

y c x t v









  

 

    

    

,,

,

,

( / ) ,

     (11) 

where  and  are zero-mean Gaussian white noise sequences with unit variance, iw iv t  is the sampling interval.  

Introducing probability distribution function (PDF) ( )f   for vector   and applying partitioning method 

(Rao-Blackwellization method), the following can be written for optimal estimate  and corresponding 

computational covariance matrix 

ˆ ( )i iY
( )i iP Y [14, 20]: 

ˆ ( ) ( / )i i iY f Y    d тˆ ˆ( ) ( )( ) ( / )i i i i i, P Y f Y d         ,   (12) 

where   is the vector of measurements obtained by the time i . A posteriori PDF 
1i

Y y y  ,..., i
 ( / )if Y is 

defined as  
( ) ( / )

( / )
( ) ( / )

i
i

i

f f Y
f Y

f f Y d

 
 

  
,     (13) 

where  is the likelihood function. 1 1 2 1θ θ θ( / ) ( / , ) ( / , )... ( / )i i i i if Y f y Y f y Y f y   θ

The distinctive feature of the problem is that with fixed θ θ j , Eqs. (11) set the linear gaussian filtering 
problem, and therefore PDFs  

 1 1
θ θ θ ) θj j

i i i i i i
f y Y N y HX D  

/
ˆ( / , ) ( ; ( , ( )cond j ,    (14) 

where  are also Gaussian. Incoming optimal prediction estimates 1 1H     ; 1
θ )j

i i
X /
ˆ (  and measurement 

residual variances   2

1
θ )cond j j

i i i i
D M y HX  

/
ˆ( ) (

θ( )

θ  are calculated using the bank of Kalman filters. To 

calculate the optimal estimate and conditional covariance matrix (12), the point-mass method can be used. Then 
it is implied that a priori PDF f  is approximated as [14, 22] 

0
1

θ μ δ θ θ( ) ( )
L

j j

j

f


  , 0

1

θ θ
μ

θ θ

( )

( )
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L
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f

f






,    (15) 

where θ j , 1.j L  is the set of possible values of parameters defining the point masses. Substituting (15) to 

(13), the following expressions can be written for a postreriori PDF θ/( )if Y : 

1

θ/ μ δ θ θ( ) ( )
L

j j
i i

j

f Y


  , 1 1

1 1
1

( / , )

( / , )
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j i i i
i L
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i i i

j

f y Y

f y Y

 

 


   
 



   
.  (16) 

With account for (12), the following relationships can be easily obtained for the estimates and conditional 
covariance matrix: 

1

ˆ ( )
L

j j
i i i i

j

Y


    , T

1

ˆ ˆ( ) ( )
L

j j j T
i i i i i i i
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P Y


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Nonlinear filtering can be used to get the bias estimate and its variance in the form 

 
1

L
j j

i i i i
j

с Y с


 ˆ ˆ( ) , 
1

L
c

i i i i
j

P Y P


cj j ( ) ,   (18) 

where j cj
i i
с Pˆ ;  are the bias estimates and variances of obtained in each local Kalman filter.  

  
Fig. 3. Allan deviation (1), bias estimation error RMS for 
optimal KF (2), calculated (3) and real (4) bias estimation 

error RMS and bias estimation error sample (5) for adaptive 
filter 

 

Fig. 4. Allan deviation (1), bias estimation error RMS for 
optimal KF (2), calculated (3) and real (4) bias estimation 

error RMS for adaptive filter 
 

  
Fig. 5. Calculated (1) and real (2) estimation error RMS for 

; estimation error sample (3) q

 

Рис. 6. Calculated (1) and real (2) estimation error RMS for 
 ; estimation error sample (3) 

 
The efficiency of the adaptive filtering method have been proved by simulation. The values  and   that are 

determined noise PSDs were assumed as 

q

 0.01 0.21adq    0.1 2.1ad  , and initial bias RMS was 1. The 

simulation results are shown on figures 3-6. In comparison the Allan deviation plot and the RMS error of optimal 
Kalman Filter (KF) bias estimates is shown on figures 3, 4 for   0.11 adq optq M , . 

Figures 3, 4 shows that use of adaptive filtering allows keeping the optimal estimation accuracy for an infinite 
interval, and adaptive filtering accuracy is not very different from KF accuracy for this level of uncertainty. The 
‘real’ RMS value is determined by averaging the estimation error squared (17) (18) using all samples. The 
‘calculated’ RMS value is the square root of the mean value of the variances calculated by (17) (18). T

 ad 1.1M opt 

he 
coincidence of these values indicates the correctness of their calculation. The transition process for model 
parameter estimation is slower compared to the estimation of the bias (Fig. 5.6). Note that the similar problem of 
determining the PSDs of noise components can be solved using the Allan variance as in [16]. The results have 
shown that optimal estimation provides a 3-5 times better accuracy than for the Allan variance method. 

This fact proves that the integrated problem of bias optimal estimation and model identification can be 
efficiently solved by nonlinear filtering methods using the bank of Kalman filters. It should be also noted that in 
designing the error model, both the problems of parameter estimation and structure identification prove 
important [21]. 

 

Conclusions  
 

The paper establishes the relationship between Allan variance and variance of bias estimation error 
received by averaging. These variances are shown to coincide under some conditions. Thus, Allan variance can 
be used to estimate the minimum error variance of bias estimation by averaging and the corresponding averaging 
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time, which is exactly important in sensor calibration. This relationship is illustrated by a model being a sum of 
white noise and random walk.  

The paper discusses an approach improving the bias estimation accuracy with unknown sensor error model  
based on nonlinear filtering methods. It should be also noted that nonlinear filtering provides both estimation of 
error model parameters and identification of model structure. 
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	Historicity.strengths, weakness,of.Allan.variances.sans.religion.pdf
	As mentioned before, if you search using Google for “Allan variance,” there are about 50 thousand results. If you add navigation to that, there are about 3 thousand results. In reviewing some of the 3 thousand I found some very interesting papers. Though I have been around the navigation community and am a Fellow of the Institute of Navigation, I do not consider myself an expert in the literature of this community. I suggest here a few papers, which I found in my search, which I thought were outstanding: Analysis and Modeling of Inertial Sensors Using Allan Variance by El-Sheimy, N., Calgary University ; Haiying Hou ; Xiaoji Niu; Allan Variance Analysis on Error Characters of MEMS Inertial Sensors for an FPGA-based GPS/INS System by Xin Zhang, Yong Li, Peter Mumford, Chris Rizos; School of Surveying and Spatial Information Systems University of New South Wales, Australia; at the following link http://www.vectornav.com/support/library/gyroscope is a fascinating paper on using ADEV to measure gyroscope instabilities; Allan Variance Analysis on Error Characters of Lowcost MEMS Accelerometer MMA8451Q by Marin Marinov*, Zhivo Petrov* (*Aviation Faculty, NVU), V. Levski”, and Dolna Mitropolia, Bulgaria; Modeling Inertial Sensors Errors Using Allan Variance, http://www.ucalgary.ca/engo_webdocs/NES/04.20201.HaiyingHou.pdf  (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) by Haiying Hou September 2004; Department of Geomatics Engineering; A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems by Alex G. Quinchia (Barcelona, Spain), Gianluca Falco (Torino, Italy), Emanuela Falletti (Torino, Italy), Fabio Dovis (Torino, Italy), and Carles Ferrer (Barcelona, Spain); Notes on Stochastic Errors of Low Cost MEMS Inertial Units, Yigiter Yuksel & Huseyin Burak Kaygisiz; Two Methods for the Determination of Inertial Sensor Parameters, Vladimir Vukmirica*, Ivana Trajkovski*, Nada Asanović*; *Military Technical Institute (VTI), Ratka Resanovića, Belgrade, Serbia; and Modified Allan Variance Analysis on Random Errors of MINS by Bin Fang and Xiaoqi Guo, TELKOMNIKA, Vol.11, No.3, March 2013, pp. 1227 ~ 1235 e-ISSN: 2087-278X.  Even though these references are excellent resources in my opinion several of them suffer from the ambiguity problem in ADEV when it behaves as -1 for the quantization noise problem. MDEV is a better metric in this case, as I have cited before.
	Because 1/f noise and fractals are so ubiquitous in modeling nature, we expect non-stationary analysis techniques – like in the family of Allan variances – to be useful as efficient time-series analysis metrics. The usage seems to be growing, but there are many areas where these metrics seem to be unknown statistical tools. In my own research, I have shown these variances to be useful in analyzing the stability of gage blocks and volt standards. Richard F. Voss has demonstrated 1/f noise in a large variety of music. Musha and Higuchi have identified 1/f noise in traffic flow. The height of the River Nile at flood stage over the last some thousands of years for which there are data has a 1/f spectral density. Such noise is found in economics, psychology, and in neurons. Pink noise is another name for 1/f or flicker-noise. You will find a fascinating article in Wikipedia on “Pink Noise” – showing its ubiquitous nature – and a large number of references are given there.
	As a fun health example, since neuron noise is 1/f, if you were to stand on one foot and then map the motion of the top of your head, the time series would be a flicker-noise process. If now you get on a bicycle and ride it to follow a straight line, since you have to integrate when riding a bike to maintain balance, the front tire deviations from the straight line will be an f-3 spectral-density process. With a controlled set of parameters, this bicycle balancing activity could be used – using ADEV to analyze the deviations – in a very simple way to access improvement or degradation in your balance. Since I am an avid mountain bike rider, I am observing this phenomenon a lot – especially on a narrow deer trail on a steep slope in the mountains near our home.
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