Onboard navigation and orientation systems for artificial Earth satellites

O.N.Anuchin, I.E. Komarova, L.F. Porfiryev

St. Petersburg: SRC of Russia - CSRI "Elektropribor", 2004. - 326 p.

Price - 60 RUR

© SRC of Russia - CSRI "Elektropribor", 2004 © O.N.Anuchin, I.E. Komarova, L.F. Porfiryev, 2004 ISBN 5-900780-53-8

The book deals with theoretical and practical issues of designing complex onboard navigation and orientation systems which form the basis for up-to-date motion control systems of space vehicles (SV) and artificial Earth satellites (AES). Algorithmic description of their operation processes is presented, accuracy estimate is given for tasks solution at different primary navigation information sources used, arrangement of its measuring. Up-to-date scientific methods of information processing using up-to-date equipment are described.

The book is intended for a wide range of specialists engaged in development, testing and operation of onboard navigation and orientation systems for SV and AES. It can be a good educational aid for senior students and postgraduates.

CONTENTS

Introduction	3
Chapter 1. Laws of motion of AES center of mass in the near-Earth space	14
1.1. General motion equation of material point in the outer space	-
1.2. Motion equation of AES center of mass near the Earth	16
1.3. Solution of motion equations of AES center of mass in the central gravitational field	23
1.4. Peculiarities of AES disturbed motion	33
1.5. Equations of mutual motion of SV in the near-Earth space	39
1.6. Influence of deviations in initial conditions on AES motion trajectory	42
1.7. General statement and solution principles of AES navigation problem using onboard measurements	54
Chapter 2. Statement and solution methods of AES orientation problems	62
2.1. General statement of AES orientation problems and selection of coordinate systems	<u>-</u>
2.2. Orientation parameters and kinematic equations of AES motion around the center of mass	67
2.3. Possible solution algorithms for orientation kinematic equations	74

Chapter 3. Sources of primary navigation information for solution of AES	80
navigation and orientation problems	80
3.1. General characteristic of primary navigation information sources	-
3.2. Inertial sources of primary navigation information	85
3.3. Astronomical sources of primary navigation information	92
3.4. Possibilities to use some physical fields for AES navigation and orientation	105
3.5. Satellite navigation systems	109
3.6. Land command-and-measurement complexes	117
Chapter 4. Methods for determining AES orbit parameters at minimum	121
amount of primary navigation information	121
4.1. Problems of determining orbit parameters with the use of minimum amount of information	•
4.2. Determining position vector by measurements of zenith distances of two stars and flight altitude	
4.3. Refinement of the position vector by measurements of primary navigation parameters	131
4.4. Determination of orbit parameters by measurements of the vector in several points	137
Chapter 5. Statistical methods for estimation of AES orbit parameters and orientation	146
5.1. General statement of determination problems for AES orbit parameters and orientation in statistical methods of information processing	l -
5.2. General procedure of information processing by statistical methods	151
5.3. Peculiarities of statistical processing methods application at estimating orbit parameters	172
Chapter 6. AES inertial navigation and orientation systems	178
6.1. Construction principles and classification of AES inertial navigation and orientation systems	l -
6.2. Functioning algorithms of AES strapdown inertial navigation systems in orientation mode (on passive flight phases)	206
6.3. Operation algorithms of AES strapdown inertial systems in navigation and orientation problem solution mode on active flight phases	222
Chapter 7. AES integrated onboard navigation and orientation systems	228
7.1. Structure, arrangement and composition of integrated onboard navigation and orientation systems for AES	 -
7.2. Astroinertial measuring unit	234
7.3. Functioning algorithms of integrated strapdown inertial navigation and orientation systems (SINOS) in orientation mode	249
7.4. Algorithms of SINOS drift astrocorrection in orientation mode	263

7.5. Algorithms for solution of navigation and orientation problems in emergency conditions	
Chapter 8. Methods for accuracy estimation of AES navigation and	276
orientation problems solution by onboard autonomous systems	
8.1. Problems and possible ways of accuracy estimation of AES navigation and orientation problems solution	-
8.2. General procedure for navigation accuracy estimation at processing by the method of least squares $\frac{1}{2}$	
8.3. Ways and possibilities of obtaining analytical accuracy estimates by using the results of statistical processing of discrete measurements	
8.4. Methods for accuracy estimation of AES navigation and orientation problems solution by imitation mathematical simulation	307
Conclusions	319
References	320
Foreword	3
Introduction	5
Chapter 1. Foundations of General Reliability Theory for Technical	1.4
Systems	14
1.1. Technical System Hardware Reliability. Probabilistic Assessment	14
1.2. Simple Flow of Events and Markov Models for Technical System Operation	19
1.3. Reliability of Redundant Technical Systems	26
1.4. Monitoring and Diagnostics of Technical Systems	35
Chapter 2. Error Model and Information Reliability Assessment of Navigation Systems	42
	44
	52
	56
	68
	74
•	81
Chanter 3 Information Failures and Malfunctions in Navigation Systems	
Monitoring and Diagnostics Methods	89
3.1. Monitoring and Diagnostics of Information Failures and Malfunctions as a Decision Problem	89
3.2. Review of Known Approaches to Solving Monitoring and Diagnostics Problems for Information Failures and Malfunctions	96
3.3. Estimation of Determined Dynamic System State	100
3.4. Optimal Estimation of Stochastic Dynamic System State	107
3.5. Monitoring and Diagnostics of Information Failures and Malfunctions in NS by	115

Optimal Methods for Multiple-Choice Filtration	
3.6. Monitoring and Diagnostics of Information Failures and Malfunctions Suboptimal Methods for Multiple-Choice Filtration	
Chapter 4. Information Failures and Malfunctions of Navigation S	ystems.
Examples of Monitoring and Diagnostics	137
4.1. Monitoring of Satellite Navigation System Integrity	137
4.2. Monitoring and Diagnostics of Information Failures in Redundant Aut System of Marine Navigation	146
4.3. Monitoring and Diagnostics of Information Failures in Low Real Autonomous System of Marine Navigation	edundant 157
Appendix 1. General Concepts of Probability Theory	175
Appendix 2. Riccati Equation Solution	181
Appendix 3. Probability of 1st Order Markov Process Non-Exceedance of a Level at Interval	Specified 185
Appendix 4. Kalman Filter Ratio Derivation	193
References	200
On behalf of the Organizing Committee of the 4 th Conference of Young Scientists <i>Navigation and Motion Control</i>	5
Session "Smart control systems"	
S.N.Vasiliev	
Logical approach to dynamic systems control (L e c t u r e)	7
E.A.Cherkashin	
Using artificial intelligence for information-control systems	24
T.I.Madzhara	
A computer-aided system for solving optimal control problems	31
Session "Gyroscopic systems"	
A.A.Stolbov	
On increasing the calibration accuracy of the inertial navigation system based on attitude gyros	38
A.M.Boronakhin	
The use of analytical gyro vertical for navigation on the railway track	45
V.V.Pchelin, A.V.Uskov	
A stabilized gyro compass based on a strapdown short-period vertical	53
N.V.Goncharov, Yu.V.Filatov	

Development of goniometric methods and means for monitoring the 58 vehicle attitude

Session "Data processing"

Session Data processing	
L.A.Mironovsky	
The theory of invariants and its application in diagnosis (L e c t u r e)	64
Yu.A.Litvinenko	
Kalman filter sensitivity to uncertainty of water current when solving the problem of inertial navigation system damping by the log	83
A.P.Aleshkin, T.O.Myslivtsev	
Adaptive empirical estimation of the state vector for a spacecraft under measurement shortage	89
M.S.Koryukin	
The use of neuronet algorithms for processing data from redundant sensors	97
G.V.Bezmen	
The possibility analysis for using neural networks in solving filtering problems	103
K.Yu.Petrova	
Optimization of defect distinguishability in test diagnosis	107
I.S.Kayutin	
Study of digital data processing algorithms for an acceleration sensor	115
D.P.Loukianov, A.Ya.Maizelis	
Investigation of speed variations for high-speed gas flows in variable cross-section nozzles	121
V.A.Smirnov	
Algebraic synthesis of controllers of gyroscopic stabilization and contro systems	l 129
A.V.Bobkov	
A system of positioning by the terrain image on the basis of line set	137

Session "Sensors of navigation and control systems"

M.I.Evstifeev, M.F.Smirnov, A.A.Untilov

analysis

The analysis of mechanical, electrical and thermal characteristics in designing a micromechanical gyro

Study of microaccelerometers using surface acoustic waves	149
Yu.V.Shadrin, S.G.Kucherkov	
Dynamic characteristics of a ring micromechanical gyro with the open loop	155
Yu.V.Povodyrev, S.M.Dyugurov	
Development of methods and means to increase the accuracy of the angular data pickup system of a strapdown electrostatic gyro	160
V.N.Khodurov	
Experimental investigation into the thermal drift of fiber-optic gyros	165
D.I.Lychev, S.G.Kucherkov	
A precision rotary test bench for testing a micromechanical gyro	171
,	
Session "Control theory and systems"	
V.O.Nikiforov	
Control of vehicles with roughly known characteristics: roughness, adaptation and robustness (L e c t u r e)	177
V.O.Rybinsky	
Robust stabilization of linear periodic systems	188
K.Yu.Polyakov	
Ultimate possibilities of smoothing random processes using continuous-digital filters	196
O.E.Yakupov	
An adaptive electro-hydraulic servo drive of the aircraft	203
T.V.Turenko	
A hybrid model of the direct digital control system with a unitary-code sensor	211
A.G.Klimenkov, A.L.Starichenkov, T.S.Chernysheva	
The software of the simulator for hydrofoil ship motion control	218

Session "Electronic and electromechanical devices of navigation and control systems"

V.D.Aksenenko, S.I.Matveev

D.P.Loukianov, I.Yu.Ladychuk

Synchronous demodulation using the digital signal processing technique 225

Ya.V.Belyaev, Ya.A.Nekrasov

The methods for estimating the accuracy of a temperature stabilization system using the software for thermal fields calculation

A.M	.Rich	nyak
-----	-------	------

A superconductive geomagnetic motor for spacecraft orientation and stabilization systems

Session "Computer technologies in navigation and control"

The central computer of the strapdown inertial attitude system and its software

D.A.Tomchin

The virtual laboratory for study and control of a single-rotor vibration $$\operatorname{\mathtt{246}}$$ bench

S.N.Turusov, O.Yu.Lukomskaya

The system of informational support for organizational readiness of the ship's crew

Session "Ship navigation"

A.V.Ulanov

The analysis of alternative approaches to managing the controlled motion of an underwater gliding vehicle

I.F.Shishkin, A.G.Sergushev

Using the science about tracks in water areas

A.G.Shpektorov, V.A.Zuev

Stabilization of a high-speed vehicle at the prescribed route 274

268

N.V.Kuzmina

Contrasting color of auxiliary information in the marine direction-finder 280

Session "Integrated navigation and orientation systems"

A.M.Boronakhin, A.V.Kazantsev. S.A.Karpasov

The results of experimental investigations of the navigation system on the railway as a part of the track measurement car CSRI-4

S.V.Ignatiev

A stabilized gyrocompass based on fiber-optic gyros with rotating sensor unit

A.A.Pisarevsky, A.N.Doronin

The integrated system for aircraft 299

45

Suboptimal double-step filter for special navigation problems

Round table "The results and forms of holding a conference using the Internet"

List	o f	authors 315	
	Forew	ord	5
		Gravimetry	
	L.K. Zh	eleznyak, V.N. Koneshov	
	Up-to-	date methods for studying gravity field of the World	9
	ocean		
	L.K. Zh	eleznyak	14
	The Ru	ussian marine gravimetric system	1-
	A.V. So	okolov, S.V. Usov, L.S. Elinson	21
	Gravit	y survey in conditions of marine seismic work	۷
	B.A. B	azhnov, L.P. Nesenjuk, V.G. Peshekhonov, A.V. Sokolov,	
	L.S. Eli	nson, L.K. Zheleznyak	33
	An into	egrated mobile gravimetric system. Development and tes	
	results	3	

V.N. Ilyin, Yu.L. Smoller, S.Sh. Yurist

A mobile ground-based gravity meter. Development and test	
results	
V.N. Berzhitzky , V.N. Ilyin , E.B.Saveliev, Y.L. Smoller, Yu.V.	
Bolotin, A.A.Golovan, N.A.Parusnikov, G.V. Popov,	
M.V. Chichinadze	48
GT-1A inertial gravimeter system design experience and results	
of flight tests	
O.A. Stepanov, B.A. Blazhnov, D.A. Koshaev	
The efficiency of using velocity and coordinate satellite	61
measurements in determining gravity aboard an aircraft	
Yu.I. Nikolsky	
Problems of reduction in high-accuracy gravity measurements	75
in geodesy and geology	
Gravity gradiometry	
G.B. Volfson	00
State and prospects of gravity gradiometry development	90
A.B. Manukin	
Design of a measuring system for a highly sensitive gravity	105
gradiometer using vertical pendulums	
M.S. Petrovskaya, G.B. Volfson	111

gradiometry data	
V.G. Peshekhonov, G.B. Volfson	
Problem solution for design of a gravity variometer operating	118
on a moving base	
G.B. Volfson, M.I. Evstifeev, V.G. Rozentsvein, M.P. Semenova,	
Yu.I. Nikolsky, E.V. Rokotyan, S.F. Bezrukov	122
A new generation of gravity variometers for geophysical	122
investigations	
Borehole navigation	
A.A. Molchanov, G.S. Abramov	
Navigation in investigation of underground space in searching,	136
exploring and developing mineral deposits	
V.G. Rozentsvein	146
State of the art of borehole gyroscopic navigation systems	140
E.V. Freiman, S.V. Krivosheyev, V.V. Losev	

Peculiarities of attitude algorithm construction for gyroscopic

inclinometers based on a single-axis gyrostabilizer

Methodical aspects of inclinometer design

N.P. Rogatykh

168

178

Construction of geopotential models by the satellite

V.M. Suminov, D.V. Galkin, A.A. Maslov

190

A mathematical error model of a gyro inclinometer