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Abstract: We report a recursive positioning algorithm for an autonomous underwater vehicle (AUV) based on measurements of 
ranges to acoustic beacons, water speed log and heading indicator data. Two types of desynchronization between the beacon and 
AUV clocks are considered: random and unknown. The algorithm starts without using AUV a priori coordinates when simulta-
neous measurements from minimum two or three beacons (depending on the desynchronization type) are first obtained. The 
newly coming measurements and those saved before the algorithm start are processed in forward and backward time in the same 
filter. If AUV coordinate estimates are ambiguous, two filters are implemented, which process the same data with different 
measurement linearization points. Ambiguity is resolved based on the ratio of a posteriori probabilities of hypotheses on AUV 
position. This ratio is calculated using the filters' outputs. 

Keywords: autonomous underwater vehicle, long baseline navigation, range and range difference measurements, dead-
reckoning, Kalman filter, ambiguity, a posteriori probability. 

INTRODUCTION 

Navigation provision of autonomous underwater 
vehicles (AUVs) generally relies on autonomous de-
vices such as a log, heading indicator, and inertial 
navigation system providing the dead-reckoning, and 
correction aids such as a hydroacoustic system 
measuring the ranges to the reference beacons. The 
correction efficiency depends on the number of 
AUV on board receivers and the beacons, their geo-
metrical arrangement, and mathematical approaches 
applied in measurement processing [1–19]. 

A large part of modern publications on this topic 
are devoted to long baseline (LBL) navigation 
method [8, 11, 17–19]. Implementation of this 
method, despite its apparent simplicity, can be non-
trivial under certain limitations and additional con-
ditions. In this paper the LBL method is utilized in 
non-standard conditions: insufficient number of 
beacons for unambiguous navigation solution, their 
unfavorable arrangement degrading the accuracy, 
and no a priori AUV coordinates. The beacons’ co-
ordinates are considered to be known, the desyn-
chronization between the beacon and AUV clocks 
can be random (with known characteristics) or un-
known. The range measurement is determined as a 

product of the measured one-way travel time from 
the beacon to AUV and approximate estimate of 
sound speed in water. The problem is solved by the 
series of time-different measurements using log and 
heading indicator data. Deterministic cross-range 
method and its subtypes using sample time-
different measurements [20] can be applied. A more 
efficient solution can be obtained by using all the 
available measurements and taking account of the 
statistical features of their errors, i.e., within the 
stochastic approach. Note that we are searching for 
a solution applicable in AUV onboard hardware in 
real time, where it is rational to employ suboptimal 
stochastic estimators of low computational com-
plexity. 

If a priori AUV position is sufficiently accurate 
for measurement linearization, the LBL method can 
be implemented using the extended or iterated 
Kalman filter (KF) [4, 21, 22]. However, in the case 
considered no a priori coordinates are available, and 
these methods cannot be applied on their own. The 
proposed algorithm relies on methods for pro-
cessing the linearized measurements as the simplest 
ones, which are supplemented with preparation 
procedures to provide proper performance. The al-
gorithm starts when the quantity of simultaneous 
measurements is sufficient to obtain the navigation 
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solution, though ambiguous, in the form of two 
possible AUV positions. 

For initial linearization we can use the approxi-
mate coordinates obtained by analytical solution of 
equations constructed from the measurements with 
no consideration for their errors, as, for example, in 
[23–26]. This approach is utilized in [13, 27] to 
process range hydroacoustic measurements. In the 
algorithm proposed below, the coordinates for line-
arization are determined with account of the fea-
tures of measurement errors, which makes them 
closer to final estimates and enhances the lineariza-
tion accuracy. 

The measurements arriving before the algorithm 
start are assumed to have been saved for further 
processing. The solution processing all the saved 
measurements at once by fixed-point smoothing 
[28] has been studied in [29]. Here, the fixed point
is the time when the algorithm starts, however, pro-
cessing a large number of saved measurements can
turn out too long. It is expedient to process the
saved measurements by parts, gradually including
them in the solution in the reverse order so that to
avoid delays in processing the measurements arriv-
ing after the algorithm start. In [27] the saved
measurements are processed recursively. The saved
measurements are processed in backward time, and
current measurements are processed in forward
time with two KFs. Their outputs are fused by the
dummy measurements method [30] used to correct
KF outputs so that they agree with other a priori
data. In this problem, the data from KF estimating
the initial and current state vectors in forward time
are updated using dummy measurements based on
outputs from KF estimating the initial and one of the
earlier state vectors in backward time. Here we pre-
sent an easier programming solution where the
saved and current measurements are processed to-
gether in a common KF.

In case of ambiguous solution, two KFs are run-
ning that use different linearization points. Based on 
their outputs, the ratio of a posteriori probabilities of 
hypotheses on AUV position is determined and fur-
ther analyzed to select the true one. This solution re-
lies on multiple model filtering theory used in some 
navigation applications [21, 31], in particular in AUV 
single-beacon navigation with no a priori coordinates 
[32]. Note a multi-KF algorithm or a polygaussian 
filter ([21], pp. 87–89) using different linearization 
points as in this paper. However, this algorithm as-
sumes using a priori information on state vector for 

determining the initial linearization points, which is 
impossible in the considered conditions. 

The key features of the presented algorithm is 
obtaining the initial navigation solution without a 
priori AUV coordinates using a minimal number of 
beacons (for navigation solutions in the form of cer-
tain points) and recursive processing of saved and 
current measurements with a common KF. The am-
biguity is resolved, as mentioned before, based on a 
known multiple model filtering approach. Here it is 
adapted to coprocessing the current and saved 
measurements in forward and backward times and 
protected from the errors caused by the limitation of 
bit grid. 

This algorithm with some modifications can be 
applied to positioning of other vehicles with dead-
reckoning sensors and systems measuring ranges or 
range differences to the beacons or point land-
marks, the number and arrangement of which does 
not provide the full navigation coverage. In indoor 
environments, these could be pseudolites [33], Ul-
tra-Wideband, Bluetooth, Wi-Fi sources, etc. [34]. 

This paper develops and refines the studies from 
[35, 36], where the algorithm is presented in a brief 
form ([35] concerns random desynchronization on-
ly). The first part of the paper includes four sec-
tions. Section 1 formulates the mathematical prob-
lem statement. Section 2 details the processing al-
gorithm for measurements at the beginning of 
solution. Section 3 reports and discusses the fusion 
of current and saved measurements with one KF. 
Section 4 focuses on ambiguous solutions. The sec-
ond part of the paper will deal with the algorithm 
runtime estimates, results from simulation and real 
data postprocessing, which confirm the algorithm 
efficiency. 

1. AUV POSITIONING PROBLEM
STATEMENT 

At discrete time moments ti, i is an integer index, 
the measured ranges to beacons are available on AUV: 

2 2 2
0ˆ ( ) ( ) ( )

,

j j j jj
i i i ii i i i

j j
i i i

Y c x x y y z z

сT v

       
   

   (1) 

where 1, , ij n   is the beacon number, xi, yi are
the AUV unknown coordinates in the local Carte-
sian frame with geographically oriented axes (no a 

priori data are available on them), ,j j
i ix y  are the 
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known horizontal coordinates of beacons, ,j
iiz z are 

the known depths of the beacons’ installation and 
AUV position, 0ĉ , Δс are a priori estimate of sound 
speed in water and its error, being a random con-

stant with standard deviation (SD) c , j
i , j

iT  
are the measured and computed one-way signal 

travel time, j
iv  is a white noise error with SD σv 

noncorrelated for different beacons, δi is the error 
common for all the beacons caused by desynchro-
nization of beacon and AUV clocks. For brevity, δi 
further is referred to as the desynchronization, and 
numbers i of discrete time moments denote the 
moments ti. The desynchronization δi is considered 
as a random error or as an unknown value. Random 
δi is given by 

i ib e   , 

where b is a random bias with SD b , ei is the 
white noise with SD e . Differences between the 
beacons’ time scales and variations of the sound 
speed are assumed negligibly small or can be partly 

referred to j
iv . 

The AUV is assumed to be equipped with a dual 
axis electromagnetic speed log and a heading indi-
cator, for example, a magnetic compass. The log 
generates the longitudinal and transverse (positive 

to starboard) velocity components * *,x yV V  with 
white noise instrumental errors with SD averaged 
over a unit interval σΔV. The heading indicator 
redaings K  have an error ΔK – a stationary first-
order Markov process with SD σΔK and correlation 
interval τΔK. We also know the approximate geo-

graphical components of the current speed ,x yU U   

with the errors ,x yU U   being stationary first-
order Markov process with SD σΔU and correlation 

interval τΔU. Suppose that K , * *,x yV V  , ,x yU U   are 
recalculated to the acoustic measurement arrival 
times using averaging, interpolation, or extrapola-
tion if required. Using the dead-reckoning method, 
the recursive equations for AUV horizontal coordi-
nates are written as follows: 

1 1 1 111

1

1

1 1 1 1 11

( ) ,
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y x
i ii

yx
i ii

x x x
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    

    

       

        

 
    (2) 

where Δti = ti – ti–1, **
1 1 11 1sin cosyx

i i
x

ii iK KV V V       , 

**
1 1 11 1cos sinyx

i i
y

ii iK KV V V       , ,x yw w  are the gen-

erating white noises with SD σΔV·Δti. 

All the random values occurring in the problem 
are assumed to have zero-mean Gaussian probabil-
ity distribution. 

Introduce the index k denoting the type of 
desynchronization δi: k = 1 – random δi, k = 2 – un-
known δi. Determine the time moment i = 0, when 
the algorithm is started. Suppose that it is the time 
when simultaneous measurements from more than k 
beacons are first input to the algorithm, i.e., meas-
urements from two and more beacons with random 
desynchronization, and measurements from three 
and more beacons with unknown desynchroniza-

tion. Let ki N   ( 0kN  ) denote the time when 
measurements from k beacons are first received. 
Thus, we have 

n0 ≥ k + 1,  ni < k with i < –Nk, 

if Nk ≠ 0, then n–Nk = k, ni ≤ k with –Nk < i ≤ –1. 

With unknown δi (k = 2), range difference meas-
urements (further, sometimes called difference 

measurements) 1 1j j
ii iY Y Y   , 1, , 1ij n   can 

be used in the solution, where δi is excluded, and 
the number of measurements is in  – 1, but range 

measurements j
iY  can be directly used too with the 

observed conditions for in . If k = 2 and only one 

measurement 1
iY  is available at the i-th time, it is 

ignored. The number of the used beacons with i > 0 
for both types of δi is not specified. Before i = 0 – 

the algorithm starting time, the measurements j
iY , 

log data **, yx
i iV V  , and heading data iK  together 

with the moments ti are saved for further use. Fig-
ure 1 explains the i scales for both types of δi. 

It is needed to determine AUV horizontal coor-
dinates xi, yi at times i ≥ 0 by all available acoustic 
measurements (1), including those saved before 
i = 0 using (2) and stochastic description of data 
errors. The problem is reduced to estimating the 
state vector 

T( , , , , , , )yx
i i i i i iX x y c b K U U      with k = 1, 

or T( , , , , , )yx
i i i i i iX x y c K U U      with k = 2, 

by measurements ,...,k iN
Y Y


, where the vectors 

1 T( ,..., )in
i i iY Y Y  are formed under the condition 

in k . 
Below we provide some explanations regarding 

the problem statement. 
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Fig. 1. Diagram showing the number of simultaneously observed beacons with i scales for two types of desynchronization δ. 

It is supposed to use the pinger beacons regularly 
emitting the signals. If the beacons are installed on 
the surface buoys, they generate the signals con-
stantly without request from the AUV and replenish 
the energy supply from the solar batteries. If bottom 
beacons are applied, their power supply is low, they 
generate signals on AUV request for a finite time. 
To send a request to the bottom beacons, AUV 
should know that it is within the beacon coverage 
area, therefore, in the case of bottom beacons we do 
not speak about complete absence of a priori infor-
mation on AUV position. 

Synchronizing the time scales of surface buoy 
beacons generally does not constitute a problem, 
because these buoys can be equipped with receivers 
of signals of global navigation satellite systems. 
The time scale of each beacon can be accurately 
synchronized with coordinated universal time UTC 
or clock of one of the satellite system with 1 PPS 
signal. The bottom beacons are synchronized by 
exchanging signals [37]. Obviously, the buoys in 
open water or on ice can be applied if their drift al-
lows performing AUV mission over a limited time 
interval. The bottom beacons should be located at 
ranges providing the signal exchange. 

The measurement sampling interval 1i i it t t     
can be varying, but it is close to a known period t  
of beacon signal generation. If no acoustic meas-
urement have been received by AUV before 

1 maxit t   , where maxt t   is the preset value,

1i it t t    is accepted, and the coordinates are 
dead-reckoned at that time. 

The coordinates are directly included in the state 
vector, which is unlike the classical scenarios of 
navigation data fusion, where the differences be-
tween the readings of autonomous navigation sys-
tems (inertial or dead-reckoning) and aiding meas-
urements [4, 21] are applied. In these problems, the 
state vector includes the errors of autonomous sys-

tems including the coordinate errors but not the co-
ordinates. In the considered problem, the coordinate 
dead-reckoning begins at the algorithm start i = 0. 
The dead-reckoning procedure is embedded in the 
position estimation algorithm. 

Unknown desynchronization δi can be treated as 
a white noise with infinite SD. However, unknown 
δi is considered as a separate case, because numeri-
cal implementation of the solution with white noise 
δi with finite but very large SD is problematic. 

The algorithm can be actually started when only 
one range or range difference measurement is 
available using single-beacon range navigation 
methods as in [32, 38–43]. However, these methods 
can turn quite labor-consuming under no a priori 
AUV position. Moreover, to obtain an unambigu-
ous solution in these conditions AUV path should 
greatly differ from the rectilinear one, which can 
contradict AUV mission. 

2. MEASUREMENT PROCESSING
AT THE ALGORITHM START (i = 0) 

To apply a computationally simple measurement 
processing algorithm based on linearization of 
measured parameters, it is essential to determine the 
initial linearization point that would ensure the al-
gorithm convergence. Since AUV a priori position 
is not available according to the problem condi-
tions, this point can be obtained only from the 
measurements. Determining the linearization point 
and estimating the state vector at the beginning of 
the algorithm is discussed in this section. 

In this problem we encounter a serious difficulty, 
i.e., possible ambiguity of AUV position. Figure 2
shows the beacon configurations, simultaneous
measurements from which provide unambiguous
(one AUV image) or ambiguous (two AUV images)
solutions. The upper row of pictures demonstrates
the cases with random desynchronization δ of bea-
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con and AUV clocks, where range measurements 
are directly used in the solution, with circular lines 
of position. The lower row of pictures shows the 
cases with unknown desynchronization with range 
difference measurements, in which desynchroniza-

tion effect is excluded. Here the lines of position 
are the hyperbolas, though the initial solution with 
unknown desynchronization presented below uses 
the original range measurements, too. 

x

y

A B2B1

 

D1
C E1 E2

D2

 
Fig. 2. Arrangements of beacons , , , , lines of position for simultaneous range (А, B1, B2) and range difference (C, D1, D2, E1, E2) 

measurements, possible AUV positions  

When AUV approaches a group of beacons, they 
are activated gradually, and in  is unlikely to in-
crease by more than 1 at once. However, the cases 

0 2n k   are quite possible, for example, when the 
navigation algorithm is started or restarted on AUV 
located in a beacon rich area. 

Case А: random desynchronization, n0 ≥ 2, 
0

0

1
0 0
1
0 0

rank 2

1 1

n

n
x x

y y

 
   
 
 





 – AUV receives signals 

from two beacons (A in Fig. 2) or three and more 
beacons, whose position projections on the horizon-
tal plane lie on a straight line. This is a case with 
two equiprobable AUV positions. To simplify the 
computations, some of them are made not in the 
original frame x, y, but in the turned frame 

cos sinx y   x , sin cosx y   y ,       (3) 

where   is the angle between axis y and the 
straight line passing through the beacons’ position 

horizontal projections, i.e., 2 1
0 0sin x x  , 

2 1
0 0cos y y   . Axis y is parallel to this line, there-

fore, axis x is perpendicular to it. We’ll use the 
same indices in AUV and beacon coordinates in x, 
y as they were in x, y frames. In the considered 

case, the algorithm consists of three steps, which 
will be used in other cases as well, with some modi-
fications. 

Step 1. The beacons’ coordinates in x, y frame 
are determined using (3) (the beacons have the 
same coordinate in x axis). AUV coordinate 0y  is 
preliminarily estimated using the measurements 

1 12 1 2 2 1 2
0 00 0

1 2 1 2
0 0 00

11 1 1 1
0 0 0 0 0 00

1 1 1
0 0 0 00

[( ) ( ) ( ) ( )

( ) ( ) ] / 2
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( ), 1, , 1.

j jj

j

j

j j j
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z z z z
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Y сT v j n

 





  

     

    

      

     

y y

y y y



    (4) 

The expression after ‘≈’ in (4) is written with ac-
count for the measurements (1) and equalities 

2 2 2 2
0 0 0 00 0 0 0( ) ( ) ( ) ( )j j j jx x y y      x x y y , 

01
0 0

n x x , with the omitted component 

11 2 1 1 2
0 0 0 0 00

11 1 1
0 0 0 00

11 2 1 1 2
0 0 00

[( ) ( ) ] / 2

[ ( ) ]

[( ) ( ) ] / 2.

jj

jj

jj

сT v сT v

с T T v v

сT v сT v







         

      

       
Note that the measurements j  generated as shown 
in (4) before ‘≈’ do not contain the squared desyn-
chronization 0 . 
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Estimate of 0y  with 0n =2 is computed using the 
simplest formula 

1 1 2
0 0 0( )  y y y . (5) 

With 0 3n   the estimate is computed with the least 
squares method 

T 1 T 1
0 ( )H R H R H  y      , (6) 

where 
0 11 T( , , )n     , 01 2 1 T

0 0 0 0( , , )nH   y y y y  , R  is

the noise covariance matrix, whose elements are 

determined on the assumption 0 0
jjT    as

0

11 1 1 1 1 1 1 2,
0 0 0 0 0 0 00

11 1 1 2
0 0 0 0

11 2 2 2,
0 00
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
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



    

    

    

  


   (7) 

where 
0

2 2 2
b e     , ,j k  is the Kronecker symbol.

A set of preliminary estimates is generated for 

the coordinate 0x : ( ) (1)
0 0
l l  x x x  , 1, ,l L  ,

where ( 1)L   x x , 1L      x x , x  is the

preset parameter, x  is the length of the interval
covering the preliminary estimates,    is rounding 

upward. The values (1)
0 , x x   are set based on the

maximum possible range Dmax of beacon signal re-
ception, i.e., 

 

 
0

0

(1)
0 0

1, ,

(1)
0 0
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, (8) 

where 2 2 2
max 0 00 0( ) ( )j jj D z z     x y y . Since all

0
jx  are equal, denote them with 0

x , if the beacons’

depths 0
jz  are approximately equal, denote 

0
0 01

0

1 n j
j

z z
n


  , simpler formulas for (1)

0 , x x   can be

used: 

(1)
0 min0
  x x x  , min2  x x  ,

0

2 2 2
min max 0 0 00

1, ,
( max | |) ( )j

j n
D z z


     x y y


  . 

Step 2. Using the linearized representation of the 
measurement vector Y0 and iterative algorithm to 

process them [22], estimates ( ) ( )
0 0,l lx y
  are computed

for each 1, ,l L  . Preliminary estimates ( )
00 ,lx y 

are used as a priori estimates and linearization 
points at the first iteration. Their errors are consid-
ered unknown parameters. The elements of the 
noise covariance matrix 0R


of the measurement 

vector Y0 are determined as 

0

, 2 2 2,
0 0 00 , , 1, ,j k k j j k

c vR T T j k n       


 .  (9)

The components of 0
jT c  refer to the measure-

ment noise. Values of 0
jT  are computed depending

on l. At the first iteration, expression 
( ) ( )2 2 2

0 00 0 0 0 0 ˆ( ) ( ) ( )j l j l jz z c    x x y y  is used 

for 0
jT , at further iterations the estimates ( ) ( )

0 0,l lx y
 

obtained at the previous iteration are used instead of 
( ) ( )
0 0,l lx y  . Further, j

iT  is computed similarly using 

the estimates available at the i-th time. 

The estimates ( ) ( )
0 0, , 1, ,l l l Lx y
    are concentrat-

ed near the points of the true and false AUV posi-
tions. The points with coordinates 

( ) ( )
0 0, , 1, ,l l l Lx y
    are divided into two groups.

They are assigned new indexing {l} so that 
{1} {2} { }
0 0 0

L  x x x
   . The points having the coordi-

nates { } { }
0 0,l lx y
   with the indexes [1]1, ,l L  , where

{ 1} { }[1]
0 0

1, , 1
arg max ( )l l

l L
L 

 
 x x


  , refer to the first

group, and the points whose coordinate indexed 

with [1] 1, ,l L L    refer to the second group. The
coordinates of centers of these point groups 

[1] { }[1]
0 0
[1] { }[1]

10 0

1 lL

l
lL 

  
   

      
x x

y y

 
  ,

[1]

{ }[2]
0 0
[2] { }[1]
0 01

1 lL

l
l LL L  

  
   

      
x x

y y

 
 

are determined and recalculated to [ ] [ ]
0 0, , 1, 2u ux y u  

using the transformation inverse of (3). 

Coordinate estimation procedure at the steps 1 and 
2 is presented in Fig. 3, where the solid circles are the 
lines of position corresponding to range measure-
ments, and the dashed circles are the boundaries of 
areas where signals from the relevant beacon may be 
received. The red line is the line of position for the 
measurement ρ1 computed according to (4). 
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[1] [1]
0 0,x y
 

[2] [2]
0 0,x y
 

[1] [1]
0 0,x y
 

[2] [2]
0 0,x y
 

 

Fig. 3. Estimation of AUV coordinates at steps 1, 2 at the algorithm 
start in Case A. 

Step 3. From the measurement vector Y0, where 

ranges are linearized at the points [ ] [ ]
0 0, , 1,2u ux y u   , 

the estimates of the four-dimensional vector 

χ = (x0, y0, Δc, b)T 

and their error covariance matrices [ ] [ ]ˆ , , 1, 2u uP u   

are computed. Here  [ ] [ ][ ] T
0 0, , 0, 0u uu x y     serve as 

a priori estimates. The values of 0
jT  are also de-

termined using [ ] [ ]
0 0,u ux y
  . The inverse error covari-

ance matrix of estimates [ ]u  for two u has the form 

1
2

2

0 0 0 0

0 0 0 0

0 0 1/ 0

0 0 0 1/

c

b

P




 
 
    
  


, so the errors of esti-

mates [ ] [ ]
0 0,u ux y
   are considered unknown parameters 

as earlier. The elements of the noise covariance ma-
trix R0 of measurement vector Y0 are 

, 2 2,
00 , , 1, ,j k j k

e vR j k n      .        (10) 

Note that Δc, b are not estimated if n0 = 2, be-
cause only two measurements and two unknown 
parameters are included in the problem. However, it 

makes sense to obtain the covariance matrices [ ]uP  

for the 4-dimensional vector χ, since they allow 
considering the mutual correlation between Δc, b, 
and estimation errors of x0, y0. 

For further solution we form the estimates 
[ ] [ ]T T
0

ˆ ˆ( ,0,0,0)u uX    of the state vector and their 

block-diagonal error covariance matrices 

[ ]
0 , 1,2uP u   with the diagonal blocks [ ]uP  and 

2

2

2

0 0

0 0

0 0

K

U

U







 
 

 
  

. 

Case B: random desynchronization, n0 ≥ 3, 
0

0

1
0 0
1
0 0

rank 3

1 1

n

n
x x

y y

 
 

 
 
 





 – AUV receives signals 

from three and more beacons, whose position pro-
jections on the horizontal plane do not lie on a 
straight line. Here we consider the scenarios with 
favorable (B1 in Fig. 2) and unfavorable B2 in Fig. 2) 
beacon configurations for AUV positioning accura-
cy. In the second scenario, the beacons lie approxi-
mately on the same line. 

To obtain the preliminary estimates of coordi-
nates x0, y0, we compute 

1 12 1 2 2 1 2
0 00 0

1 12 1 2 2 1 2
0 0 0 00 0

1 11 1 0
0 00 0

0
1 1 1
0 0 0 0

1 1 1
0 0 0 00

[( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ] / 2

( )

( ), 1, , 1.

j jj

j j

j j

j j j

Y Y x x

y y z z z z

x
x x y y

y

Y сT v

Y сT v j n

 

 

 

  

     

      
         

     

      

 (11) 

Here in the last expression (after ), as in (4), the 

part 11 2 1 1 2
0 0 0 0 00[( ) ( ) ] / 2jjсT v сT v          is 

omitted. Using least squares method with (11) as 
the measurements, estimates of the coordinates are 
computed: 

0 0

T 10

0
x y

x
P H R

y
    

 
   
 ,               (12) 

where 
0

1

1n 

 
     

 ; 
0 0

1 2 1 2
0 0 0 0

1 1
0 00 0

n n

x x y y
H

x x y y

  
     

   ; R  is 

the noise covariance matrix with the elements de-

fined by (7); 
0 0

T 1 1( )x yP H R H      is the error covar-

iance matrix of estimates 0 0,x y  . Note that from the 

condition 

0

0

1
0 0
1
0 0

rank 3

1 1

n

n
x x

y y

 
 

 
 
 





 it follows that 

rank 2H  , therefore, 
0 0x yP is not singular. 

From matrix 
0 0x yP  the major semiaxis a of the 

error ellipse is determined – square root from the 
larger matrix eigenvalue. 
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If a a , where a  is the specified threshold, step 
3 for Case А is performed with unambiguous AUV 
position, i.e., u = 1, and 0 0,x y   obtained in (12) are

used instead of [1] [1]
0 0,x y
  . This situation occurs when

the beacons do not lie close to one straight line (B1 
in Fig. 2). 

If a a , the observed beacons are located approx-
imately on one straight line (B2 in Fig. 2), and here, 
like in Case А, we consider two hypotheses on AUV 
position. The angle  between the major axis of the 
error ellipse (eigenvector for the larger eigenvalue of 
matrix 

0 0x yP ) and axis x is determined. Then Step 1 is

partially performed for the Case A: the beacons’ co-
ordinates x, y are determined using (3) and prelimi-

nary estimates 0 0, , 1, ,l lx y l L    are generated. Here
the formula 0 0 0sin cosx y   y    is used, and

(1)
0 , x x   is computed using (8). Further, Steps 2, 3 for

the Case A are performed. 

Case C: unknown desynchronization, n0 ≥ 3, 
0

0

1
0 0
1
0 0

rank 2

1 1

n

n
x x

y y

 
 

 
 
 





– measurements from three

or more beacons are available, whose position pro-
jections on the horizontal plane lie on one straight 
line (C in Fig. 2). In this case, the algorithm is simi-
lar to the Case А with transformation from x, y to x, 
y by rotating the frame by angle α between axis y 
and the straight line passing through the beacon po-
sition horizontal projections. At Step 1 the estimate 

0y  is obtained using (6). Here, unlike Case A, we

calculate not the noise covariance matrix R , but its
inverse directly included in (6): 

0
0

0
0

1 2 T 1
0 0

1 T 1
1 0 0

2 T 1
0 0

1 T 1
1 0 0

T 1
0 0

lim ( )

lim
1

,

R R Y Y

R Y Y R
R

Y R Y

R Y Y R
R

Y R Y





  
 

 


 


 




     

  
   

   
 

 
 

 

 

 


 


     (13) 

where 02 1 1 T
0 0 0 00( , , )nY Y Y Y Y    ; R  is the matrix

with the elements determined as those of matrix R

in (7), but with 
0

0  . Note that 1R  is singular,

i.e., R  does not have a finite value. Matrices 1
0R ,

1
0R  used at the Steps 2, 3 are found similarly to

1R :

1 T 1 T
1 1 10 0

0 0 0T 1
0

1 T 1 T
1 1 10 0

0 0 0T 1
0

,

,

R JJ R GG
R R R

gJ R J

R JJ R GG
R R R

gJ R J

 
  



 
  



   

   

    
 

,   (14) 

where 0R


, 0R  are the (n0–1) × (n0–1) matrices with
the elements defined by (9) with σδ0 = 0 and (10) 
with σe = 0; J is the (n0–1)-dimensional vector of 
ones; G


, G are the (n0–1)-dimensional vectors,

whose elements are the sums of elements in the rel-

evant rows of 1
0R


, 1
0R ; g

 , g are the sums of el-

ements of G


, G.

At the Step 3 in this and two further cases D and 
E, χ is a three-dimensional vector (not four-
dimensional, as in Case A): χ = (x0, y0, Δc)T. The 

estimates of the state vector [ ]
0

ˆ uX  and their block-

diagonal error matrices [ ]
0 , 1,2uP u   are computed 

similarly to Case A. 

Case D: unknown desynchronization, n0 = 3, 
1 2 3
0 0 0
1 2 3
0 0 0

rank 3

1 1 1

x x x

y y y

 
    
 

 – measurements from three

beacons are available, whose position projections 
on the horizontal plane do not lie on a straight line. 
In these conditions, both unambiguous (D1 in Fig. 2) 
and ambiguous (D2 in Fig. 2) solutions are possi-
ble, following three steps from the Case A, but with 
some differences. The rotation angle α of the axes 
x, y relative to x, y in this case is such that 

2 1 1 2
0 0 0 0sin S Y x Y x       , 
2 1 1 2

0 0 0 0cos C Y y Y y        , 

where 1 1
00 0

j jY Y Y   , 1 1
00 0

j jx x x   , 1 1
00 0

j jy y y   ,

j = 1, 2. As a scalar measurement at Step 1, instead 
of ρ1 in Case А, we use 

 

2 1 1 2
0 0

1 1
2 1 0 0 0

0 0 2 2 00 0
2 2 ,

Y Y

x y x
Y Y

yx y

S C

       
               

  0y




where ρ1, ρ2 are determined by (11), ‘∙∙∙’ denote the 

components due to errors Δc, 0 , 1,2,3.jv j   The es-
timate 0y  at Step 1 is calculated by the formula

2 2
0 S C  y  substituting (5), (6) in Case А. If
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at Step 2 the difference { } {1}
0 0
L x x

   turns out to be 

less than the threshold, the values {1} { }
0 0, , Lx x
   are 

not divided into two groups, L[1] = L is accepted, 
and only one hypothesis is considered. At Steps 2, 3, 

as in the previous case C, 1
0R , 1

0R  from (14) are 
used. 

Case E: unknown desynchronization, n0 ≥ 4, 
0

0

1
0 0
1
0 0

rank 3

1 1

n

n
x x

y y

 
 

 
 
 





 – measurements from four 

or more beacons are available, whose position pro-
jections on the horizontal plane do not lie on a 
straight line. This is an analog of the case B. Here we 
consider the scenarios with favorable (E1 in Fig. 2) 
and unfavorable (E2 in Fig. 2) beacon configura-
tions for AUV positioning accuracy. The unfavora-
ble situation occurs when the beacons lie approxi-
mately on the same straight line. The actions as in 

Case B are performed, with the difference that 1R  
in (12) is determined using (13), and at Steps 2, 3 

1
0R , 1

0R  computed by (14) are used. 

Note that the technique employed in cases C, D, 
E – processing of range measurements, each of 
which contains the same unknown desynchroniza-
tion error between the signal receiver and emitter 
with a special inverse measurement noise covari-
ance matrix – has earlier been applied in [13]. Al-
ternatively, at Steps 2, 3 in Cases C, D, E the vector 
of difference measurements ΔY0 with the relevant 
observation matrix and noise covariance matrix can 
be processed. 

After obtaining the coordinate estimates 
[ ] [ ]
0 0,u ux y
   for AUV position hypotheses u = 1, 2 at 

Step 2, they can be checked for compliance with the 
maximal beacon signal reception range Dmax. If the 

range from the point [ ] [ ]
0 0,u ux y
   to at least one used 

beacon exceeds Dmax, the hypothesis u can be re-
jected, and the other hypothesis u* can be consid-
ered true and its position estimates may be taken to 
be the unambiguous solution. 

It should be remembered that in case of ambigu-
ous solution under small range between AUV pos-
sible solutions compared with the measurement er-
rors, the distribution of position estimate errors 
greatly differs from the Gaussian one. This does not 
allow the effective use of Kalman type algorithms 

based on Gaussian approximation of the state vec-
tor a posteriori density. These situations are left be-
yond the scope of this paper. 

3. FUSION OF SAVED AND CURRENT 
MEASUREMENTS IN ONE FILTER 

Therefore, after obtaining [ ]
0

ˆ uX , [ ]
0

uP  for one 

(u = 1) or two (u = 1, 2) AUV position hypotheses, 
AUV coordinates xi, yi at the following times i = 1, 2… 
should be estimated with account of the newly com-
ing measurements Y1, …, Yi and those saved before 
the algorithm start Y–Nk, …, Y–1, k = 1, 2 is the type 
of desynchronization δi. This is done using one or 
two – depending on the number of hypotheses u – 
extended or iterated KF, which estimate the aug-
mented state vector 

 T T
, , , , , ,x y

s i s s s s s ix y K U U X    , 

where s is the time before the algorithm start, suc-
cessively decreasing from –1 to –Nk, i is the current 
time. The time i increases when s reaches –ΔN0 
with i = 0 or the sum s + ΔN0 becomes divisible by 
ΔN with i ≥ 1, where the values ΔN0 ≥ 0 and 
ΔN ≥ max(1, ΔN0) are set based on the onboard 
computer performance and the fact that processing 
of Y0 is more complicated as compared to other Yi. 
Note that in the vector 𝕏s,i the values x, y, ΔK, ΔUx, 
ΔUy are presented for two moments i and s, while 
constants Δc, b are presented only once. 

The diagram of processing the current measure-
ments (with indices i = 1, 2…) and saved measure-
ments (with indices s = –1, …, –Nk) is shown in 
Fig. 4. 

With random δi (k = 1), range measurement vec-
tors Yi, Ys participate in the processing, and with 

unknown δi (k = 2), vector 11 T( ,..., )in
i i iY Y Y     of 

difference measurements 1 1j j
ii iY Y Y    and the 

similarly formed ΔYs. 
It should be explained that with k = 2, i > 0 the 

KF may use the original range measurements Yi, Ys 
and inverse noise covariance matrix of a special 
form as described in the previous section for i = 0. 
But the thing is that with i = 0, the three-
dimensional vector χ = (x0, y0, Δc)T is to be estimat-
ed, whereas with i > 0 we estimate the state vector 
with a dimensionality greatly exceeding that of the 
measurement vector, and this technique turns more 
labor-consuming compared to processing of differ-
ence measurements ΔYi, ΔYs. 
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After 
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start (i=0)

Fig. 4. The diagram of processing the current and saved measurements; {} is the fractional part. 

Coordinates in forward time (xi, yi, i ≥ 1) are pre-
dicted using (2), and in backward time (xs, ys, s ≤ –1), 
using 

1 1 1 1 11

1 1 1 1 1

1

1

1

1 1
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( ) .

y x
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s s s

y y y
s s s

x x K U U t w

y y K U

V

U t

V

wV V
    

    

 



       

       

 





(15) 

Considering the stationarity of ΔK, ΔUx, ΔUy, 
prediction of , ,x y

s s sK U U    in backward time is

made with the same equations as , , yx
i i iK U U    in

forward time, with the difference that variables in 
the right part of equations for , ,x y

s s sK U U    have
the index s + 1. 

All components of the augmented state vector 
𝕏s,i are predicted with (i = 1, s = –1) or 

0
0, 0

s N
s N

N

       
. If the latter condition is 

not met, only five first components of 𝕏s,i referring 
to the time s are predicted. 

When s reaches –Nk, i.e., after processing of all 
the saved measurements, the augmented state vec-
tor 𝕏–Nk,i is substituted with the original state vector 

Xi. Then the estimates [ ]ˆ u
iX  and their error covari-

ance matrices [ ]u
iP are extracted from [ ]

,
ˆ

k
u
N i

 ,

[ ]
,k

u
N i

 . Further, KF predicts and estimates Xi by the

current measurements Yi or ΔYi. If Nk = 0, such KF 

is activated immediately after obtaining [ ]
0

ˆ uX , [ ]
0

uP .

To understand what measurement set has been 
processed with KF by the current time, Fig. 5 pre-
sents the transformations of Gaussian approxima-
tions of a posteriori densities 

 state processed
vector measurementsf  with Nk > 0, i.e., when

saved measurements are available. This diagram, 
similarly to the one in Fig. 4, reflects the KF perfor-
mance for one of hypotheses u. It shows the range 
measurements. With k = 2 these are the measure-
ments from which the range difference measure-
ments are formed. 

As 𝕏s,i is estimated, the list of processed meas-
urements to the right of the line in f(∙|∙) in the grey 
part of the diagram increases up and down, whereas 
as Xi is estimated, it increases only down. Each verti-
cal column of transformations f(∙|∙) in the shaded area 
denotes the cycle of processing of a certain number of 
saved measurements (Y with negative indices) and 
one current measurement (Y with positive index). At 
the same time, at the first cycle the saved measure-
ments are not processed if ΔN0 = 0, and at the last cy-
cle the current measurement is not processed if  
(Nk – ΔN0) / ΔN is not an integer number. 
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Fig. 5. Diagram of transformations of Gaussian approximations of a posteriori densities during processing of saved and current measurements, 

 0where , is rounding downward.( )/ 1 , 0 .
k kI N N N N        

Below we provide a brief comment on (2), (15) 
for predicting the coordinates in forward and back-
ward time linearized relative to the heading indica-
tor readings K . Under highly accurate heading 
generation this is acceptable, but with large heading 
errors ΔK it is rational to linearize the equations 
relative to corrected heading K̂  with account for 
the estimates obtained before prediction. Then ΔK 
in the equations should be understood as an error of 
corrected heading K̂ rather than original heading 
K . The equation for ΔK does not change. 

When solving the problem with two hypotheses 
u = 1, 2 for i  1, as at the algorithm start (i = 0), we 

can check if the range from the points [ ] [ ]ˆ ˆ,u u
i ix y  to 

some of the used beacons exceeds Dmax. If the 
threshold is exceeded for one hypothesis, it is con-
sidered false, its KF stops working, and the other 
hypothesis is taken as a true one u*. If the threshold 
is not exceeded, the true hypothesis is selected 
based on stochastic approach as shown in the next 
section. 

4. AMBIGUITY RESOLUTION 

When solving the problem with two hypotheses 
on AUV position u = 1, 2 consider their a posteriori 
probabilities p(u|Yi), i.е., conditional probabilities 
of u given the vector Yi consisting of all measure-
ments Ym processed by the time i, where m = 0 with 

i = 0, m = –min(ΔN0 + (i–1)ΔN, Nk), …, i with i ≥ 1. 
With unknown δi (k = 2) by Ym we mean the range 
measurements participating in the formation of 
range difference measurements. Remind that if with 
k = 2 only one range measurement is available for 
some time, it is not used and is not included in mY . 
The ratio of a posteriori probabilities of the first and 

second hypotheses 1/2 ( 1 | )

( 2 | )
i

i
i

u
p

u


 


p Y

p Y
 allows se-

lecting the true hypothesis u* according to the rule 

1/2

1/2

1/2

1,  with ,
2,  with 1 ,
not determined,  with 1 ,

i

i

i

p p
u p p

p p p


   
   
     

 

where 1p   is the specified threshold. Therefore, 
out of u = 1, 2 hypotheses, the one with a posteriori 
probability larger than that of alternative hypothesis 
by a specified number of times is considered to be 
true. 

The ratio of a posteriori probabilities 1/2
ip  is de-

termined with an expression based on the Gaussian 
distribution of random values included in the prob-
lem with equal a priori probabilities of hypotheses 
u = 1, 2: 

/21/2 e iA
i ip B  , 

where 
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[ ]uP  is the error covariance matrix of estimating the

4-dimensional vector  by Y0 (with k = 1) or the 3-
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0
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     is the value 

of i when the processing of saved measurements 

stops,  is rounding downward; [ ]u
i  and [ ]u

i  for

i > 0 is the residual vector of measurements Yi or ΔYi 
by the prediction of Xi based on Yi–1 and its covari-

ance matrix. Interpretation of [ ]
,
u

s i , [ ]
,
u

s i  depends

on s, i. If i = 1, –ΔN0 < s or i > 1, {(s + ΔN0) / ΔN} ≠ 0, 

where {} is the fractional part, [ ]
,
u

s i  and [ ]
,
u

s i  de-

note the residual of scalar measurement Ys or ΔYs 
based on the prediction of 𝕏s,i and its variance, oth-
erwise, it is a residual vector of measurements Ys, Yi 
or ΔYs, ΔYi based on the prediction of 𝕏s,i and its 
covariance matrix. In the latter case we mean the 
prediction of 𝕏s,i by the measurements Ys+1, …, Yi–1 
or ΔYs+1, …, ΔYi–1. Note that the measurement re-
siduals and their covariance matrices included in 
the formulas above are used in KF and need not be 
specially computed. The formulas given in this sec-
tion are based on the multiple model filtering theory 
[21, 31]. Calculating the ratio of a posteriori proba-
bilities for two hypotheses with a described tech-
nique excludes the errors due to the bit grid limita-
tion, which typically occur in direct calculation of a 
posteriori probabilities. 

Once u* is determined, KF for this hypothesis 
continues running, and KF for the alternative hy-
pothesis is stopped. 

CONCLUSIONS 

The paper presents a computationally simple re-
cursive AUV positioning algorithm based on meas-
urements of ranges to acoustic beacons, electromag-
netic speed log and heading indicator data. Getting 
simultaneous measurements from two beacons (with 
random desynchronization between the beacon and 
AUV clocks) or from three beacons (with unknown 
desynchronization) is sufficient for the algorithm to 
start. AUV a priori coordinates are not needed. 

The algorithm starting procedure depends on the 
number and arrangement of beacons, and desyn-
chronization clock type. Initial (comparatively 
coarse) estimation of AUV two or one coordinate in 
specified direction is common for all cases. This is 
done using the differences of squared range meas-
urements to different beacons, with excluded 
squared AUV coordinates and squared desynchro-
nization. Some simplifying assumptions are made, 
however, SDs of measurement noises and sound 
speed error are considered. The resultant initial so-
lution that can be unambiguous or ambiguous (with 
two possible AUV positions) is found by pro-
cessing the range or range difference measurements 
presented in linearized form with account of earlier 
coarse coordinate estimates. 

Further, the current measurements and measure-
ments saved before the algorithm start are processed 
together in an extended KF, with the saved meas-
urement processed in reverse order. The amount of 

90

GYROSCOPY AND NAVIGATION Vol. 16 №1 2025

90 D.A. KOSHAEV AND V.V. BOGOMOLOV

GYROSCOPY AND NAVIGATION Vol. 16 №1 2025



 

 

the saved measurements processed between the arri-
vals of new measurements depends on the computer 
performance. The state vector estimated by the KF 
includes the current coordinates, constant error of 
the sound speed, heading indicator error and errors 
in knowledge of current speed components as sta-
tionary processes, and with random desynchroniza-
tion, constant bias of beacon and AUV clocks. 
When the saved measurements are processed, the 
state vector is augmented with the coordinates, 
heading indicator error, and errors in knowledge of 
current speed components at the time when these 
measurements were obtained. 

The algorithm provides ambiguity resolution be-
tween two hypotheses on the AUV position, and 
applies the extended KF with a specific measure-
ment linearization point to each hypothesis. Out of 
two hypotheses, the one with a priori probability 
larger than that of alternative hypothesis by a speci-
fied number of times is considered to be true. The 
ratio of a posteriori probabilities is computed by the 
outputs of two KFs. 

The presented algorithm processing the saved 
(before the algorithm start) measurements in back-
ward time can be modified for the other models of 
errors of autonomous sensors and acoustic meas-
urements, including the sound speed error. As noted 
in the Introduction, the modified algorithm can be 
applied to other navigation applications using dead-
reckoning and measured ranges or range differences 
to beacons or point landmarks. 

The second part of the paper will present the re-
sults of studying the algorithm performance in 
terms of runtime and accuracy. 
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