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Abstract: This paper proposes a clock bias gross error detection method, which combines weighted support vector data descrip-
tion (SVDD) with modified median absolute deviation (MAD) to address the limitations of the traditional MAD method. The 
method uses the local reachable density as the weighting factor of SVDD, which fully considers the local characteristics of each 
data. By constructing the minimum hypersphere in the high-dimensional feature space, the one-dimensional data are trans-
formed into the distance from the vector point to the center of the hypersphere in the high-dimensional space. This transfor-
mation increases the discrepancy between normal data and gross errors. The modified MAD method probes the distance from 
the current epoch vector point to the center of the hypersphere for gross errors, and thus determines whether the current clock 
bias is a gross error. The precision clock bias data of BDS-3 with different sampling intervals provided by GFZ were used for 
simulation experiments. By comparing the results of the MAD method and the WS-MAD method, it is found that the WS-MAD 
method can detect the small gross errors in the smooth clock bias frequency data and more gross errors in the clock bias data 
with trend term floating. The fitting and prediction analyses on satellites with different orbits and clock types show that the WS-
MAD method improves the fitting and prediction accuracy of MEO and IGSO satellites better than that of GEO satellites. For 
the same MEO satellites, the enhancement effect of hydrogen clocks is better than that of rubidium clocks. 
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1. INTRODUCTION  
 
Precision clock bias data of GNSS satellites serve 

as the foundation for performance analysis of space-
borne atomic clocks, as well as for modeling and pre-
dicting satellite clock bias [1]. However, due to opera-
tions such as clock switching, phase or frequency tun-
ing during satellite high-speed movement, as well as 
external environmental interference and internal fac-
tors, calculated clock bias data often contains gross 
errors, jumps, and missing data. Thus, reasonable and 
effective data preprocessing is necessary for satellite 
clock research, as it is crucial for ensuring the reliabil-
ity of research results [2]. 

Currently, various effective strategies and pro-
cessing methods exist for addressing abnormal situa-
tions such as jumps and data discontinuities [3]. Zhou 
et al. proposed an algorithm to find the jump point of 
clock bias data by using a moving window [4]; Guo 
proposed a clock bias jump detection based on the 

Hilbert-Huang transform [5]; Ghaderpour et al. gave 
the processing method of unequal interval data [6]; 
Riley and Howe propose a time-domain Allan vari-
ance divided by the Barnes deviation function to deal 
with data discontinuities [7]. For the gross error prob-
lem, Wang made use of the multi-resolution charac-
teristics of wavelet analysis to carry out a preliminary 
discussion on the application of this method in the 
gross error processing of atomic clock data [8]; Fang 
studied the application of cluster analysis in multivar-
iate statistical methods in the gross error detection of 
satellite clock bias [9]; Wei proposed a median line 
gross error detection method for the linear trend of 
primary differential data [10]; Zhang et al. proposed a 
method for detecting the gross error of satellite-
ground time synchronization clock bias based on 
Bayesian principle [11]. The most commonly used 
traditional gross error detection method is median ab-
solute deviation (MAD) [12]. While it is simple and 
has low computational complexity, its effectiveness in 
detecting outliers of smaller magnitude in clock bias 
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is limited due to the reliance on empirical thresholds. 
Additionally, its ability to process clock bias frequen-
cy data with trend terms is also limited. 

In recent years, Support Vector Data Description 
(SVDD) and its extended algorithms have gained 
popularity in the field of anomaly detection, with re-
lated theories finding wide application [13]. An im-
portant step in SVDD modeling is to project the data 
into a high-dimensional feature space. This approach 
can handle nonlinear problems and does not require 
data to conform to a strict Gaussian distribution [14]. 

This study employs SVDD to model clock bias 
frequency data by mapping it from the original space 
to a higher dimensional feature space, where a mini-
mum hypersphere is constructed. The clock bias fre-
quency data is transformed into the distance from the 
sample point to the center of the hypersphere, increas-
ing the differentiation between normal and gross error 
data. Considering that all sample points are equally 
important for model construction, making the model 
insensitive to outliers and data density, the local 
reachable density is introduced to weight the SVDD 
model [15]. The local reachable density covers more 
neighborhood information than traditional density, 
enabling better extraction of local features in frequen-
cy data and easier differentiation between normal and 
gross error points. Using Beidou Global Navigation 
Satellite System (BDS-3) satellites with different or-
bits and clock types, this study analyzes the feasibility 
and superiority of the improved algorithm in terms of 
gross error elimination, fitting accuracy, and predic-
tion accuracy. 

Next, the weighted SVDD as well as the modified 
MAD methods are explained and then the experi-
mental results are shown. In addition, the results are 
compared and described in detail. Conclusions are 
given in the last part. 

 
2. WS-MAD CLOCK BIAS GROSS ERROR 

DETECTION METHOD  
 
2.1. LRD Weighted SVDD 
 

The idea of SVDD is to construct a minimum-
volume hypersphere in a high-dimensional space that 
contains all normal data samples and excludes outliers 
from the hypersphere [16]. In the SVDD modeling 

process, the initial data 1 2[ , , , ]N
TY y y y  , 

1,2,iy i N  ， ,where N is total number of data 

and Y  is first normalized by： 

ˆ( )
( )

Y i YY i



 ,                       (1) 

where 1 2[ , , , ]N
TY y y y  , ( )Y i  is equivalent to iy ,

Ŷ is the mean of the sample data, and   is the vari-
ance. Then, the data is mapped to the higher-
dimensional feature space through the nonlinear trans-
formation function    . Here we have used the 

Gaussian kernel function. 

In traditional SVDD, each data is given equal im-
portance in model construction, which can cause in-
sensitivity to gross errors and data density. To address 
this issue, weighted SVDD introduces weighting fac-
tors for each data to improve the compactness of the 
model. Unlike traditional SVDD, weighted SVDD 
solves the following equation to compute the corre-
sponding hyperspheres: 

2

, , 1

2
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. ( ) , 0,

N

i iR a i

i i i

R C w

s t y a R




 
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

    


         (2) 

Where a and R are the center and radius of the hy-
persphere, respectively; (1 ( ))C p N   is a trade-off 
parameter, p is the probability that normal data are 
allowed to be misreported as outliers in the data [17]; 

i is a slack variable that allows the existence of 

anomalies outside the hypersphere, iw is the weight of 

the i -th data, and its smaller value indicates that the 
corresponding data is more likely to be an outlier. 

In the process of training the model, the weight 
factors of weighted SVDD ought to adequately repre-
sent the local distribution features of each data. Densi-
ty serves as a significant metric for evaluating data 
distribution and has been widely utilized in the formu-
lation of weighting factors. One of these metrics is the 
Local Reachability Density (LRD) [18], which takes 
into account not only the distance between a data 
point and its neighbors but also the neighborhood in-
formation of its neighbors. 

Compared to traditional density, the Local Reach-
ability Density encompasses a broader range of 
neighborhood information. This information is incor-
porated into the weights of the SVDD model to en-
hance the extraction of local features from data points. 
The specific steps involved are as follows [19]: 
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Step 1: Find the K nearest neighbors of the data 

iy  to form its local neighbor set ( )iLN y . 

Step 2: In the local neighbor set ( )iLN y  , define 

the radius as distance( )iK y . 

distance( )

max{ ( ) | ( , )}
i

j i i j

K y
y LN y ED y y

 

 
     (3) 

where 2( , ) ( )i j i jED y y y y  denotes the Euclid-

ean distance between iy  and jy . 

Step 3: Calculate the Euclidean distance between 

iy  and ( 1, 2,..., )k
iy k K , where k

iy  is the  

k -th nearest neighbor of iy  .Then, relative to k
iy , 

the reachable distance of iy is calculated as: 

_ ( , )

max{ distance( ), ( , )}

k
i i

k k
i i i

reach d y y

K y d y y



 
, (4) 

where ( , )k
i id y y denotes the Euclidean distance 

between iy  and k
iy . 

From Eq. (3), it can be seen that the reachable dis-
tance of iy  is not only related to its direct neighbor 

k
iy , but also to the K-nearest neighbors of its neigh-

bor. 

Finally, the local reachable density is inversely 
proportional to the reachable distance, which is de-
fined as: 

1

( )
_ ( , )

i K k
i ik

KLRD y
reach d y y






.   (5) 

After introducing the LRD weighting factor, the 
weighted SVDD modeling process is executed and 
Eq. (2) may be converted into the following equation 
through introducing the Lagrange multipliers

1 2[ , , , ]T
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where 
2[ ( ) ( ) ]( , ) ( ) ( )

T
i j i jy y y y

i i i jKer y y y y e      
 

is 

the kernel function [20], and after solving Eq. (6), on-
ly the object iy  with 0i  is called support vectors 

(SVs), and its subscript set is
{ | 0, 1, 2, , }iSV i i N    . Compared with the 

traditional SVDD method, the upper limit of the con-
straints in Eq. (2) becomes iw C . Equation (6) is still a 

quadratic optimization problem, and finally, the cen-
ter a and radius R of the hypersphere are: 

( )i ii sv
a y


                                (7) 

1 1 1
( , ) 2 ( , ) ( , ).

N N N
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          (8) 

This gives the distance from each sample point to the center of the hypersphere: 

1 1 1
( ) ( , ) 2 ( , ) ( , )

N N N
i i i i i i i ji i j

Dist y Ker y y Ker y y Ker y y
  

     .      (9) 

 

2.2 Modified MAD gross error detection  
method 
 

Typically, the original satellite clock bias data ex-
hibits a large magnitude, making it difficult to identify 
the easily concealing abnormal points. Therefore, the 
detection of gross errors in clock bias data is com-
monly performed using its corresponding frequency 
data [21]. The magnitude of frequency data is small, 
and the gross error point corresponding to its peak 
value is easy to detect. The correspondence between 

the clock bias (phase) data and frequency data is as 
follows [22]: 

 1 0/i i iy x x   ,    (10) 

where iy  is the frequency value of the i -th epoch; 

1ix  and ix are the clock bias values of the 1i  and i
epochs, respectively; 0 is the time interval between 

adjacent epochs; 1,2,3i N  . 

The idea of the MAD method is [23]: compare the 
frequency data iy with the sum of the median m and 
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several multiples of the Median Absolute Deviation 
(MAD) in the frequency data sequence. If the clock 
bias frequency data satisfies Eq. (11), it is considered 
to be a gross error point and the value should be elim-
inated. 

( )iy m nMAD  ,     (11) 

where { }im median y ,

{ 0.6745}iMAD median y m  and n  is an inte-

ger, generally taking the empirical value of 3. 

In Eq. (11), iy  is the clock bias frequency data, the 

left term iy denotes the absolute value of the clock 

bias frequency data, and MAD is positive in the right 
term. nMAD can be regarded as a variable with con-
stant positive value, when the right term

0m nMAD  , iy  is judged as a gross error, which 

shows that the mathematical expression of the tradi-
tional MAD model is ambiguous. The MAD algo-
rithm judges whether the distance of each iy  deviat-

ing from the median is limited. When the left term is 

iy m  , its mathematical meaning is the distance iy  

deviating from the median m. Similarly, when the 
right hand side is nMAD , its mathematical meaning 
is to determine whether iy  is the threshold distance 

value of gross error. Therefore, the traditional MAD 
method is modified to [24]: 

  iy m nMAD  .   (12) 

After the gross error is detected, it is complement-
ed by linear interpolation. 

2.3 WS-MAD methodology flow 
 

The weighted SVDD with modified MAD method 
is referred to as the WS-MAD method. The flow chart 
of the WS-MAD gross error detection method is 
shown in Fig. 1. The specific process is as follows. 

Step 1: The original clock bias data 

1 2 1{ , , }NX x x x   , 1,2, 1ix i N   ，  are 

converted to clock bias frequency data 

1 2{ , , }NY y y y  , 1,2,iy i N  ， by Eq. (10). 

Step 2: Y  is obtained by normalizing 

1 2[ , , , ]N
TY y y y  according to Eq. (1). 

Step 3: Based on the LRD method, the weight W 
of each data in Y is calculated. 

Step 4: The weighted SVDD model is constructed 
using the weighting factor W. The center a of the cor-
responding hypersphere is calculated by solving Eq. 
(7). 

Step 5: Calculate the distance Dist from the sample 
point to the center of the hypersphere. Then, bring the 
Dist set into Eq. (12) for judgment. If 
Dist m nMAD  , then Dist is judged to be gross 

error, and the frequency data corresponding to the 
current epoch is judged to be gross error. 

Step 6: After the gross error is removed, linear in-
terpolation completes the data and converts the fre-
quency data to clock bias phase data. 

In this paper, the identification of gross error points 
diverges from the conventional approach of assessing 
whether sample points reside inside or outside the hy-
persphere. Instead, the one-dimensional clock bias 
frequency data is transformed into distances from 
sample points to the center of the hypersphere in a 
high-dimensional feature space using SVDD. Subse-
quently, the presence of gross errors within the fre-
quency data is determined by examining the set of 
distances. The introduction of LRD to construct the 
weight factor of SVDD makes it easier to recognize 
the gross error by extracting the local features of the 
data points. 
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Fig. 1. Flowchart of the WS-MAD gross error detection scheme. 

 

3. TEST COMPUTATION AND ANALYSIS 
 

The experimental data are precision clock bias 
products of the BDS-3 system provided by the Ger-
man Research Center for Geosciences (GFZ). Figure 

2 gives the single-day clock bias data of four satellites 
with clock sampling intervals of 30 s and 300 s, re-
spectively. At the same time, these four satellites cov-
er three types of BDS-3 orbits and two types of 
clocks.

(a)  

 
(b)  

 
Fig. 2. BDS-3 original satellite clock bias sequence diagram of different orbits：(a) 30 s sampling interval; (b) 300 s sampling interval. 

CLOCK BIAS GROSS ERROR DETECTION METHOD 73

GYROSCOPY AND NAVIGATION Vol. 15 №1 2024 



(a)  

 
(b)  

 
Fig. 3. BDS-3 clock bias frequency sequence for satellites in different orbits: (a) 30 s sampling interval; (b) 300 s sampling interval. 
 

In Fig. 2, the clock bias sequence plots of the four 
satellites with different sampling intervals have the 
same data trend. PRN19 and PRN25 are BDS-3 me-
dium earth orbit (MEO) satellites, PRN38 is BDS-3 
inclined geosynchronous orbit (IGSO) satellite, and 
PRN59 is BDS-3 geostationary orbit (GEO) satellite. 
The overall trend can be seen through the satellite 
clock bias sequence diagram. The clock bias sequence 
diagrams for PRN19, PRN25, and PRN38 exhibit a 
linear trend, while the clock bias sequence diagram 
for PRN59 shows a phase jump and does not exhibit a 
linear trend. This phenomenon may be attributed to 
the introduction of orbit accuracy uncertainty in the 
GEO satellite, leading to reduced accuracy in the 
clock bias of PRN59 [25]. Additionally, it should be 
noted that the original clock bias sequence for the four 
satellites is on the order of microseconds (us), while 
the gross errors typically present in the clock bias are 
on the order of nanoseconds (ns). Therefore, gross 
errors should not be detected. The commonly em-
ployed approach involves dividing the original clock 
bias sequence by the sampling interval to convert it 
into clock bias frequency data, as depicted in Fig. 3. 

Figure 3 clearly illustrates the presence of gross er-
rors after converting the original clock bias data into 
frequency data. The frequency data with 300 s sam-
pling interval have more obvious trend than the fre-
quency data with 30 s sampling interval. Compared 
with the smooth frequency data series, the frequency 
data with obvious trend terms increase the difficulty 
of identifying the gross error. Utilizing clock bias data 
for modeling and forecasting without adequate error 
elimination will undoubtedly result in significant neg-
ative impacts, underscoring the importance of acquir-
ing clean clock bias data [26]. 

Tables 1 and 2 present the results of gross error de-
tection for the four satellites using two sample interval 
frequency data, with n values ranging from 1 to 5. 

Table 1. Statistics of gross error detection values for 
four satellites (30 s) 

Method 
Satellite 

PRN19 PRN25 PRN38 PRN59 
MAD1 865 897 912 933 
MAD2 97 117 145 134 
MAD3 8 10 22 9 
MAD4 3 1 0 0 
MAD5 2 0 0 0 

 
Table 2. Statistics of gross error detection values for 

four satellites (300 s) 

Method 
Satellite 

PRN19 PRN25 PRN38 PRN59 

MAD1 96 86 97 101 
MAD2 14 9 20 48 
MAD3 4 0 1 13 
MAD4 2 0 0 1 
MAD5 2 0 0 0 

 

Analysis of Tables 1 and 2 reveals that an increase 
in the value of n corresponds to a higher number of 
detected gross errors. Ideally, gross errors should con-
stitute a small portion, typically no more than ten per-
cent of the dataset. The value n is usually taken to be 
3 when MAD gross errors are detected. 

 

3.1. Experiment 1 
 

For the convenience of description, the modified 
MAD method used in the subsequent experiments 
will be referred to as the MAD method. The MAD 
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method and the WS-MAD method proposed in this 
paper are utilized to detect the gross errors in the 
clock bias frequency data of the four satellites 
PRN19, PRN25, PRN38, and PRN59 with sampling 
intervals of 30 s and 300 s. The detection results are 

shown in Figs. 4 and 5. In the figures, the gross errors 
identified by the MAD method are denoted by blue 
solid points, while the gross errors detected by the 
WS-MAD method are depicted using red circles. 

(a)                                                                                    (b) 

 
(c)                                                                                 (d) 

 
Fig. 4. Four satellites based on MAD and WS-MAD gross error detections (30 s): (a) PRN19 (BDS-3 MEO); (b) PRN25 (BDS-3 MEO); 

(c) PRN38 (BDS-3 IGSO); (d) PRN59 (BDS-3 GEO). 
(a)                                                                           (b) 

 
(c)                                                             (d) 
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Fig. 5. Four satellites based on MAD and WS-MAD gross error detections (300 s) (a) PRN19 (BDS-3 MEO); (b) PRN25 (BDS-3 MEO); 

(c) PRN38 (BDS-3 IGSO); (d) PRN59 (BDS-3 GEO). 

 

Additionally, Table 3 presents the count of gross 
errors detected by both methods for sampling inter-
vals of 30 s and 300 s. 

Table 3. Statistics of gross error detection number of MAD 
and WS-MAD 

Preprocessing  
methods 

PRN19 
30   300 

PRN25 
30     300 

PRN38 
30      300 

PRN59 
30    300 

 

MAD 8 4 10 0 22 1 9 12  
WS-MAD 17 9 16 7 41 6 30 16  
Difference 9 5 6 7 19 5 21 4  

 

As can be seen from Figs. 4 and 5 (a), (b), (c), and 
(d) plots and Table 3, more gross errors were detected 
by the WS-MAD method compared to the MAD 
gross error detection method. 

Figure 4 shows that the clock bias frequency se-
quence diagrams for PRN19 and PRN25 satellites 
exhibit no discernible trends. The MAD prepro-
cessing method successfully detects the majority of 
gross errors; however, it struggles to identify smaller 
gross errors. The WS-MAD strategy transforms the 
clock bias frequency data into distances between vec-
tor points and the center of a circle within a high-
dimensional feature space. This transformation en-
hances the data's difference, thereby facilitating the 
detection of small gross errors. In the frequency se-
quence diagrams of the clock bias, the PRN38 and 
PRN59 satellites exhibit trend terms. 

The MAD gross error detection adopts a fixed m-
value. Due to the influence of data trend term, it is 
difficult for iy  deviating from m-value to detect gross 

error through distance constraint condition, which 
leads to poor gross error detection effect of MAD 
method. As a result, the MAD method yields poor 
performance in gross error detection. The WS-MAD 

strategy takes full account of the local characteristics 
of data points. By assigning higher weights to normal 
data, the weight assigned to gross error points is re-
duced. This weighting scheme enables the detection 
of gross errors that occur under different trends. 

Figure 5 demonstrates a similar effect in detecting 
gross errors as Figure 4. However, in the case of 
PRN25 with a 300 s sampling interval, the MAD 
gross error detection fails to identify the presence of 
gross errors. The figure clearly illustrates the presence 
of gross errors in this frequency data. By successfully 
detecting the presence of gross errors, the WS-MAD 
strategy demonstrates the superiority of the WS-MAD 
algorithm. 

To assess the viability of the proposed prepro-
cessing algorithm for gross error rejection, we utilized 
clock bias frequency data from four satellites: PRN19, 
PRN25, PRN38, and PRN59. These data were pre-
processed using both the MAD method and the WS-
MAD method. Subsequently, the recovered original 
clock bias data underwent analysis for fitting and pre-
diction, with the root-mean-square error (RMS) serv-
ing as the metric to evaluate the accuracy of both fit-
ting and prediction. The RMS is calculated as follows: 

2

1

1
= ( )

n
iin

 


 ,                                  (13) 

where i is the difference between the fitted clock 
bias value and the true clock bias value, and n is the 
number of clock bias. 

The fitting accuracies of the clock bias data of 
the four satellites after MAD and WS-MAD pre-
processing at different sampling intervals are statis-
tically presented in Tables 4 and 5. 
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Table 4. Statistics of fitting accuracy after MAD and WS-MAD preprocessing (30 s) 

 
 
 
 

Table 5. Statistics of fitting accuracy after MAD and WS-MAD preprocessing (300 s) 
 
 
 

 
 

The analysis of Tables 4 and 5 reveals that the fit-
ting accuracy of the clock bias data for PRN19, 
PRN25, PRN38, and PRN59 satellites significantly 
improves when preprocessed using the WS-MAD 
method in comparison to the MAD method. Moreo-
ver, the effect of improving satellite clock fitting ac-
curacy varies across different sampling intervals. 

Among the satellites, PRN25 exhibits the most 
significant improvement with a 30 s sampling inter-
val, as the fitting accuracy after WS-MAD prepro-
cessing achieves 0.088 ns, representing a 6.83% en-
hancement over the MAD method. Conversely, 
PRN19 demonstrates the least improvement, with a 
fitting accuracy of 0.164 ns after WS-MAD prepro-
cessing, showing a 4.09% improvement compared to 
the MAD method. The PRN38 and PRN59 satellites 
exhibit lifting accuracies of 5.87% and 6.23%, respec-

tively. On average, the accuracy of the four satellites 
improves by 5.64%. 

Among the data with a 300 s sampling interval, the 
PRN25 satellite demonstrates the most significant en-
hancement effect, achieving an improvement of 
10.64%. Conversely, the PRN59 satellite exhibits the 
least enhancement effect, with only a 3.98% im-
provement. The PRN38 and PRN59 satellites exhibit 
enhancement accuracies of 5.71% and 3.98%, respec-
tively. On average, the accuracy of the four satellites 
improved by 6.22%. 

The gray model is used to model the clock bias da-
ta preprocessed by MAD and WS-MAD methods to 
forecast the satellite clock bias in the next 24h. Tables 
6 and 7 show the statistics of four satellites under dif-
ferent sampling intervals  

Table 6. Statistics of prediction accuracy after MAD and WS-MAD preprocessing (30 s) 
 
 
 
 
 

Table 7. Statistics of prediction accuracy after MAD and WS-MAD preprocessing (300 s) 
 
 
 
 

. 

Tables 6 and 7 reveal that the prediction accuracy 
of the clock bias data for PRN19, PRN25, PRN38, 
and PRN59 satellites significantly improves when 
preprocessed using the WS-MAD method in compar-
ison to the MAD method. 

Among the data with a 30 s sampling interval, the 
PRN38 satellite exhibits the most significant im-
provement effect, with the prediction accuracy reach-
ing 2.120 ns after WS-MAD preprocessing, represent-
ing a 16.70% improvement compared to the MAD 
method. Conversely, the PRN59 satellite shows the 
least improvement effect, with the prediction accuracy 
after WS-MAD preprocessing reaching 2.002 ns, in-

dicating an 8.63% improvement compared to the 
MAD method. The PRN19 and PRN25 satellites 
achieve prediction accuracies of 10.05% and 16.70%, 
respectively. On average, the accuracy of the four sat-
ellites improves by 13.31%. 

Among the data with a 300 s sampling interval, the 
PRN19 satellite demonstrates the most significant en-
hancement effect, achieving an improvement of 
15.61%. Conversely, the PRN59 satellite exhibits the 
least enhancement effect, with only a 9.02% im-
provement. The PRN38 and PRN59 satellites exhibit 
enhancement accuracies of 10.52% and 11.20%, re-

Preprocessing model PRN19 PRN25 PRN38 PRN59 
MAD, ns 0.171 0.094 0.545 0.514 

WS-MAD, ns 0.164 0.088 0.513 0.482 
Improvement, % 4.09% 6.38% 5.87% 6.23% 

Preprocessing model PRN19 PRN25 PRN38 PRN59 
MAD, ns 0.154 0.094 0.560 0.502 

WS-MAD, ns 0.147 0.084 0.528 0.482 
Improvement, % 4.55% 10.64% 5.71% 3.98% 

Prediction/ns PRN19 PRN25 PRN38 PRN59 
M-GM(1,1) 2.498 1.036 2.581 2.191 

WSM-GM(1,1) 2.247 0.863 2.120 2.002 
Improvement, % 10.05% 16.70% 17.86% 8.63% 

Prediction/ns PRN19 PRN25 PRN38 PRN59 
M-GM(1,1)  2.921 1.008 2.517 2.095 

WSM-GM(1,1)  2.465 0.902 2.235 1.906 
Improvement, % 15.61% 10.52% 11.20% 9.02% 
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spectively. On average, the accuracy of the four satel-
lites improved by 11.59%. 

3.2. Experiment 2 
 

Experiment 1 confirms that the proposed prepro-
cessing algorithm effectively detects minor gross er-
rors in smooth frequency series and more gross errors 
in frequency data with floating trend terms. Due to the 
uncertainty of a single satellite, it is not possible to 
judge the enhancement effect of the WS-MAD pre-
processing method on satellites with different orbits 

and different clock types. To address this, we selected 
the clock bias data of BDS-3 MEO PRN19-PRN30, 
IGSO PRN38-PRN40, and GEO PRN59-PRN60 sat-
ellites for subsequent experimental analysis. Tables 8 
and 9 provide a summary of the fitting accuracies of 
the clock bias data from 17 satellites after MAD and 
WS-MAD preprocessing, respectively, considering 
different sampling intervals. Figure 6 illustrates the 
improvement in fitting accuracy values for each satel-
lite based on WS-MAD preprocessing at 30 s and 300 
s sampling intervals. 

Table 8. Statistical values of fitting accuracy for different orbital satellite clocks based on MAD and WS-MAD preprocessing (30 s) 

Table 9. Statistical values of fitting accuracy for different orbital satellite clocks based on MAD and WS-MAD preprocessing (300 s). 

 

PRN MAD WS-MAD 
Accuracy 

improvement 

Mean 
accuracy 

improvement 
Satellite clock 

type 
Track 

type 

PRN 19 1.975e-10 1.780e-10 9.87% 

8.30% rubidium clock 

MEO 

PRN 20 1.827e-10 1.657e-10 9.30% 

PRN 21 2.419e-10 2.318e-10 4.18% 

PRN 22 2.343e-10 2.192e-10 6.44% 

PRN 23 0.570e-10 0.528e-10 7.37% 

PRN 24 0.926e-10 0.809e-10 12.63% 

PRN 25 0.554e-10 0.354e-10 9.75% 

15.04% hydrogen clock 

PRN 26 0.814e-10 0.610e-10 25.06% 

PRN 27 0.144e-10 0.126e-10 12.50% 

PRN 28 0.901e-10 0.769e-10 14.65% 

PRN 29 1.053e-10 0.906e-10 13.96% 

PRN 30 0.938e-10 0.804e-10 14.29% 

PRN 38 1.444e-10 1.311e-10 9.21% 

8.58% hydrogen clock IGSO PRN 39 1.489e-10 1.378e-10 7.45% 

PRN 40 1.687e-10 1.534e-10 9.07% 

PRN 59 6.310e-10 6.055e-10 4.04% 
5.27% hydrogen clock GEO 

PRN 60 3.725e-10 3.483e-10 6.50% 

PRN MAD WS-MAD 
Accuracy 

improvement 
Mean accuracy 
improvement 

Satellite Clock 
Type 

Track 
type 

PRN 19 2.081e-10 1.750e-10 15.91% 

13.40% rubidium clock 

MEO 

PRN 20 1.896e-10 1.522e-10 19.73% 

PRN 21 2.377e-10 2.117e-10 10.94% 

PRN 22 2.220e-10 1.933e-10 12.93% 

PRN 23 0.561e-10 0.515e-10 8.20% 

PRN 24 0.869e-10 0.759e-10 12.66% 

PRN 25 0.506e-10 0.458e-10 9.49% 

16.01% hydrogen clock 

PRN 26 0.912e-10 0.751e-10 17.62% 

PRN 27 1.416e-10 1.230e-10 13.14% 

PRN 28 0.901e-10 0.744e-10 17.43% 

PRN 29 1.108e-10 0.927e-10 16.34% 

PRN 30 0.958e-10 0.747e-10 22.03% 

PRN 38 1.518e-10 1.347e-10 11.26% 

12.24% hydrogen clock IGSO PRN 39 1.546e-10 1.345e-10 13.00% 

PRN 40 1.845e-10 1.615e-10 12.47% 

PRN 59 6.469e-10 6.125e-10 5.32% 
5.31% hydrogen clock GEO 

PRN 60 3.787e-10 3.584e-10 5.29% 
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Fig. 6. Improvement in fitting accuracy of satellites in different orbits based on WS-MAD preprocessing. 

 
 

Table 8 presents the statistical values of the fitting 
accuracy for the two preprocessing methods at a 30 s 
sampling interval. In general, the MEO-orbiting 
PRN26 satellite, equipped with a hydrogen clock, ex-
hibits the highest enhancement accuracy, achieving a 
remarkable improvement of 25.06%. Conversely, the 
PRN59 satellite in the GEO orbit, equipped with a 
hydrogen clock, demonstrates the lowest improve-
ment accuracy, reaching only 4.04%. Considering 
different orbit types, the average enhancement accu-
racy for MEO, IGSO, and GEO satellites is 11.67%, 
8.58%, and 5.27%, respectively. Among them, MEO 
satellites exhibit the highest enhancement accuracy, 
followed by IGSO satellites, while GEO satellites 
show the lowest enhancement accuracy. This indi-
cates that the proposed preprocessing method effec-
tively enhances the quality of clock bias data for 
MEO and IGSO satellites. Focusing solely on MEO 
satellites, the improvement accuracy of the hydrogen 
clock is 15.04%, whereas the rubidium clock achieves 
an improvement accuracy of 8.30%. Notably, the hy-
drogen clock exhibits a higher improvement accuracy 
compared to the rubidium clock. 

Table 9 presents the statistical values of the fitting 
accuracy for the two preprocessing methods at a 300 s 
sampling interval. Similarly to the 30 s sampling in-
terval, the hydrogen clock in the MEO orbit demon-
strates superior enhancement accuracy compared to 
the rubidium clock. Among the different orbit types, 

MEO satellites exhibit the highest average enhance-
ment accuracy of 14.71%, followed by IGSO satel-
lites at 12.24%, while GEO satellites show the lowest 
enhancement accuracy of 5.31%. In general, the 
PRN30 satellite, equipped with a hydrogen clock, 
achieves the highest improvement accuracy of 
22.03%. Conversely, the PRN60 satellite in the GEO 
orbit, equipped with a hydrogen clock, exhibits the 
lowest improvement accuracy, reaching only 5.29%. 

Comparing Tables 8 and 9, the proposed prepro-
cessing algorithm is more effective in improving the 
fitting accuracy of the clock bias data at 300 s sam-
pling interval than that of the clock bias data at 30 s 
sampling interval in terms of the three orbital types. 
Figure 6 illustrates that, with the exception of PRN25, 
PRN26, and PRN60 satellites, the improvement in 
fitting accuracy for the remaining satellite clocks is 
greater at the 300 s sampling interval compared to the 
30 s sampling interval data. 

To examine the prediction of clock bias data after 
WS-MAD preprocessing, we employ the gray model 
(GM (1,1)) and the quadratic polynomial model. 
These models are utilized to represent the clock bias 
data after preprocessing by MAD and WS-MAD, re-
spectively, and to forecast the clock bias for the up-
coming 24 hours. The accuracy of the forecast results 
is assessed through the root mean square error (RMS), 
where the precise clock bias value corresponding to 
the forecast time period serves as the reference true 
value. Tables 10 and 11 present the prediction accura-
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cy of 17 satellites at 30 and 300 s sampling intervals 
following MAD and WS-MAD preprocessing when 
utilizing the gray model to forecast the 24-hour peri-
od. Tables 12 and 13 show the prediction accuracy of 

the quadratic polynomial model for 17 satellites at 30 
and 300 s sampling intervals after MAD and WS-
MAD preprocessing for 24h duration.  

 

Table 10. Statistical values of 24-h duration accuracy of gray model-based forecasts for satellite clocks in different orbits (30 s) 

PRN 
M-GM(1,1), 

ns 
WSM-GM(1,1), ns 

Accuracy 
improvement 

Mean accuracy 
improvement 

Satellite 
clock type 

Track 
type 

PRN 19 0.668 0.497 25.60% 

11.90% 
rubidium 
clock 

MEO 

PRN 20 3.358 3.134 6.67% 

PRN 21 7.756 6.752 12.94% 

PRN 22 3.320 2.992 9.88% 

PRN 23 5.518 5.102 7.54% 

PRN 24 2.593 2.367 8.72% 

PRN 25 0.415 0.354 14.70% 

19.34% 
hydrogen 
clock 

PRN 26 0.621 0.525 15.46% 

PRN 27 0.360 0.300 16.67% 

PRN 28 2.998 2.370 20.95% 

PRN 29 0.547 0.397 27.42% 

PRN 30 0.614 0.486 20.85% 

PRN 38 2.226 1.996 10.33% 

13.20% 
hydrogen 
clock 

IGSO PRN 39 0.822 0.690 16.06% 

PRN 40 3.439 3.060 11.02% 

PRN 59 2.721 2.518 7.46% 
7.92% 

hydrogen 
clock 

GEO 
PRN 60 2.757 2.526 8.38% 

Table 11. Statistical values of 24-h duration accuracy of gray model-based forecasts for satellite clocks in different orbits (300 s) 

PRN M-GM(1,1), ns WSM-GM(1,1), ns 
Accuracy 

improvement 
Mean accuracy 
improvement 

Satellite 
clock type 

Track 
type 

PRN 19 0.627 0.406 35.25% 

14.36% 
rubidium 
clock 

MEO 

PRN 20 3.401 3.072 9.67% 
PRN 21 8.086 7.018 13.21% 
PRN 22 3.316 2.946 11.16% 
PRN 23 5.438 4.968 8.64% 
PRN 24 2.405 2.207 8.23% 
PRN 25 0.424 0.314 16.04% 

19.29% 
hydrogen 
clock 

PRN 26 0.784 0.607 22.58% 
PRN 27 0.460 0.375 18.48% 
PRN 28 2.830 2.475 12.54% 
PRN 29 0.668 0.488 26.95% 
PRN 30 0.548 0.443 19.16% 
PRN 38 2.313 2.054 11.20% 

12.30% 
hydrogen 
clock 

IGSO PRN 39 0.798 0.681 14.66% 
PRN 40 3.424 3.046 11.04% 
PRN 59 2.660 2.332 12.33% 

11.11% 
hydrogen 
clock 

GEO 
PRN 60 2.721 2.452 9.89% 

 

Table 10 shows the accuracy statistical values of 
the 24-h forecast using the gray model after the two 
preprocessing methods at 30-s sampling interval. In 
general, the MEO satellite PRN29, equipped with a 
hydrogen clock, demonstrates the highest improve-
ment accuracy at 27.42%, while the MEO satellite 
PRN20, equipped with a rubidium clock, exhibits the 
lowest improvement accuracy at only 6.67%. Consid-
ering different orbit types, the average enhancement 
accuracies for MEO, IGSO, and GEO satellites are 
15.62%, 13.20%, and 7.92%, respectively. MEO sat-

ellites exhibit the highest enhancement accuracies, 
followed by IGSO satellites, while GEO satellites 
show the lowest enhancement accuracies. This indi-
cates that the proposed preprocessing method effec-
tively enhances the quality of clock bias data for 
MEO and IGSO satellites. Focusing solely on MEO 
orbit satellites, the improvement accuracy for the hy-
drogen clock is 19.34%, whereas for the rubidium 
clock, it is 11.90%. Moreover, the average improve-
ment accuracy for the hydrogen clock surpasses that 
of the rubidium clock. 
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Table 11 shows the accuracy statistics of the 24-h 
forecast using the gray model after the two prepro-
cessing methods for the 300-s sampling interval. Sim-
ilarly to the 30-s sampling interval, the average im-
provement accuracy of the MEO orbit's hydrogen 
clock surpasses that of the rubidium clock. Across 
different orbital types, the average improvement accu-
racies for MEO, IGSO, and GEO satellites are 
16.83%, 12.30%, and 11.11%, respectively. MEO 
satellites exhibit the highest improvement accuracy, 
followed by IGSO satellites, while GEO satellites 

demonstrate the lowest improvement accuracy. Over-
all, the satellite PRN19 equipped with a rubidium 
clock exhibits the highest improvement accuracy at 
35.25%, while the MEO satellite PRN24 equipped 
with a rubidium clock demonstrates the lowest im-
provement accuracy, merely 8.23%. Comparing Ta-
bles 10 and 11, for MEO and GEO satellites, the WS-
MAD method provides a greater enhancement with 
300 s clock bias data. And for the IGSO, the WS-
MAD method is better at boosting the clock bias data 
of 30 s than the clock bias data of 300 s.  

 

Table 12. Statistical values of 24-h duration accuracy of quadratic polynomial model-based forecasts  
for satellite clocks in different orbits (30 s) 

PRN M-QP, ns WSM-QP, ns 
Accuracy 

improvement 
Mean accuracy 
improvement 

Satellite 
clock type 

Track 
type 

PRN 19 2.328 1.978 15.03% 

13.57% 
rubidium 
clock 

MEO 

PRN 20 1.766 1.547 10.87% 
PRN 21 1.479 1.324 10.48% 
PRN 22 1.595 1.507 5.52% 
PRN 23 0.691 0.599 13.31% 
PRN 24 1.216 0.897 26.23% 
PRN 25 0.415 0.360 13.25% 

19.91% 
hydrogen 
clock 

PRN 26 1.357 1.025 24.47% 
PRN 27 1.685 1.452 13.83% 
PRN 28 0.609 0.468 23.15% 
PRN 29 1.696 1.426 15.92% 
PRN 30 1.106 0.787 28.84% 
PRN 38 1.541 1.398 9.28% 

9.97% 
hydrogen 
clock 

IGSO PRN 39 2.092 1.944 7.07% 
PRN 40 2.244 1.940 13.55% 
PRN 59 4.705 4.342 7.72% 

7.43% 
hydrogen 
clock 

GEO 
PRN 60 2.647 2.458 7.14% 

Table 13. Statistical values of 24-h duration accuracy of quadratic polynomial model-based forecasts  
for satellite clocks in different orbits (300 s) 

PRN M-QP, ns WSM-QP, ns 
Accuracy 

improvement 
Mean accuracy 
improvement 

Satellite 
clock type 

Track type 

PRN 19 2.548 1.965 15.03% 

12.35% 
rubidium 

clock 

MEO 

PRN 20 1.623 1.234 10.87% 
PRN 21 1.581 1.351 14.55% 
PRN 22 1.595 1.436 9.97% 
PRN 23 0.708 0.654 7.63% 
PRN 24 1.234 1.036 16.05% 
PRN 25 0.484 0.406 16.12% 

21.67% 
hydrogen 

clock 

PRN 26 1.482 0.983 33.67% 
PRN 27 1.579 1.328 15.90% 
PRN 28 0.524 0.402 23.28% 
PRN 29 1.302 1.097 15.75% 
PRN 30 1.199 0.896 25.27% 
PRN 38 1.462 1.320 9.71% 

8.62% 
hydrogen 

clock 
IGSO PRN 39 2.333 2.192 6.04% 

PRN 40 2.036 1.830 10.12% 
PRN 59 4.958 4.620 7.72% 

7.30% 
hydrogen 

clock 
GEO 

PRN 60 1.841 1.673 7.14% 

 
Table 12 shows the accuracy statistics values of 

the 24-h forecast using the quadratic polynomial 
model after the two preprocessing methods at 30-s 
sampling interval. In general, the MEO satellite 

PRN30, equipped with a hydrogen clock, exhibits the 
highest improvement accuracy at 28.84%, while the 
MEO satellite PRN22, equipped with a rubidium 
clock, demonstrates the lowest improvement accura-
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cy, which is only 5.52%. Considering different orbital 
types, the average enhancement accuracies for MEO, 
IGSO, and GEO satellites are 16.74%, 9.97%, and 
7.43%, respectively. MEO satellites demonstrate the 
highest enhancement accuracy, followed by IGSO 
satellites, while GEO satellites exhibit the lowest en-
hancement accuracy. Examining solely the MEO or-
bit satellites, the enhancement accuracy for the hy-
drogen clock is 19.91%, while for the rubidium clock, 
it is 13.57%. Moreover, the average enhancement ac-
curacy for the hydrogen clock surpasses that of the 
rubidium clock. 

Table 13 shows the accuracy statistics of the 24-h 
forecast using a quadratic polynomial model after the 
two preprocessing methods for the 300-s sampling 
interval. Similarly to the 30-second sampling interval, 
the average improvement accuracy of the MEO orbit's 
hydrogen clock surpasses that of the rubidium clock. 
Across different orbital types, the average improve-
ment accuracies for MEO, IGSO, and GEO satellites 
are 17.01%, 8.62%, and 7.30%, respectively. MEO 
satellites exhibit the highest improvement accuracy, 
followed by IGSO satellites, while GEO satellites 
demonstrate the lowest improvement accuracy. Over-
all, the satellite PRN26 equipped with a hydrogen 
clock exhibits the highest improvement accuracy at 
33.67%, whereas the IGSO satellite PRN39, also 
equipped with a hydrogen clock, demonstrates the 
lowest improvement accuracy of only 6.04%. 

The average forecast boosting accuracy of the pro-
posed preprocessing algorithm for clock bias data 
with a 300-second sampling interval is comparable to 
that of the clock bias data with a 30-second sampling 
interval for all three orbital types when comparing 
Tables 12 and 13. 

4. CONCLUSIONS 
 

This paper proposes a method for detecting gross 
errors in satellite clock bias data, combining 
weighted SVDD with corrected MAD. Precision 
clock bias data with sampling intervals of 30 s and 
300 s from GFZ are selected for the experiment. 
Firstly, based on the modified MAD and WS-MAD 
methods, the gross error detection is carried out on 
four satellite clocks with different characteristics of 
clock bias frequency data. The effectiveness and 
feasibility of detecting clock bias gross errors are 
verified by evaluating the fitting accuracy and fore-
casting accuracy. Additionally, the impact of the 
WS-MAD method on improving the fitting accura-

cy and forecasting accuracy for satellites with dif-
ferent orbits and clock types is investigated. 

The experimental results demonstrate that the 
WS-MAD method outperforms the MAD gross er-
ror detection method in detecting smaller gross er-
ror points in clock bias data with varying sampling 
intervals. Moreover, it exhibits a superior detection 
effect for clock bias data with floating trend terms. 
The WS-MAD method is better than the MAD 
gross error detection method in both fitting accura-
cy and forecasting accuracy. Through an analysis of 
the fitting accuracy and forecasting accuracy of sat-
ellites with varying orbits and clock types, it is evi-
dent that the WS-MAD method exhibits higher 
boosting accuracy for MEO and IGSO satellites 
compared to GEO orbit satellites. Among satellites 
in the same orbit, hydrogen clocks demonstrate 
greater enhancement accuracy than rubidium 
clocks. The preprocessing algorithm proposed in 
this paper enriches the quality control method of 
satellite clock bias data to a certain extent, which 
can be used as a reference for the users of satellite 
clock performance analysis, precision positioning, 
and clock bias prediction. 
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