Aerospace and marine instrument-making sensors, devices and systems under thermal actions

V.E. Dzhashitov, V.M. Pankratov

// Under the general editorship of the RAS Academician V.G. Peshekhonov St. Petersburg: SRC of Russia - CSRI "Elektropribor", 2005. - 404 p.

Price - 70 RUR

© SRC of Russia - CSRI "Elektropribor", 2005 © V.E. Dzhashitov, V.M. Pankratov, 2005 ISBN 5-900780-57-0

Mathematical models of classical and promising aerospace and marine sensors, devices and systems have been considered with regard to external and internal, deterministic and random thermal actions. Mathematical models of thermal processes and thermal drift of floated, dynamically tuned, electrostatic, hemispherical resonator, fiber-optic, micromechanical gyros and accelerometers, sensors and other physical parameters, electronics service units have been constructed and investigated. Particular attention has been given to construction of the new mathematical models enabling to investigate the non-linear dynamics of thermally disturbed sensors, devices and systems. The monograph presents a developed, generalized and significantly enhanced version of the book "Mathematical models of thermal drift of gyroscopic sensors of inertial systems", 2001, on the basis of the recent research conducted by its authors. Quite detailed extracts from it have been quoted here. It provides logical coherence of the material presentation not only for specialists and designers but also for students and post-graduates. Besides, such an approach makes it possible to get to know the current status of thermal disturbance issues of high-precision measurement instrumentation. The book contains systematic parts revealing the essence of interconnectivity of physical processes under operation of aerospace and marine articles.

The book is intended for scientists, engineers and technicians. Also it can be useful for post-graduates and students of higher education institutes.

Bibliography: 53 references. 162 illustrations. 10 tables.

CONTENTS

Introduction	3
Chapter 1. Laws of motion of AES center of mass in the near-Earth space	14
1.1. General motion equation of material point in the outer space	-
1.2. Motion equation of AES center of mass near the Earth	16
1.3. Solution of motion equations of AES center of mass in the central gravitationa field	^{il} 23

1.4. Peculiarities of AES disturbed motion	33
1.5. Equations of mutual motion of SV in the near-Earth space	39
1.6. Influence of deviations in initial conditions on AES motion trajectory	42
1.7. General statement and solution principles of AES navigation problem using onboard measurements	54
Chapter 2. Statement and solution methods of AES orientation problems	62
2.1. General statement of AES orientation problems and selection of coordinate systems	-
2.2. Orientation parameters and kinematic equations of AES motion around the center of mass	67
2.3. Possible solution algorithms for orientation kinematic equations	74
Chapter 3. Sources of primary navigation information for solution of AES	80
navigation and orientation problems	
3.1. General characteristic of primary navigation information sources	-
3.2. Inertial sources of primary navigation information	85
3.3. Astronomical sources of primary navigation information	92
3.4. Possibilities to use some physical fields for AES navigation and orientation	105
3.5. Satellite navigation systems	109
3.6. Land command-and-measurement complexes	117
Chapter 4. Methods for determining AES orbit parameters at minimum	121
amount of primary navigation information	
4.1. Problems of determining orbit parameters with the use of minimum amount of information	f -
4.2. Determining position vector by measurements of zenith distances of two stars and flight altitude	127
4.3. Refinement of the position vector by measurements of primary navigation parameters	131
4.4. Determination of orbit parameters by measurements of the vector in several points	137
Chapter 5. Statistical methods for estimation of AES orbit parameters and	Ι
orientation	146
5.1. General statement of determination problems for AES orbit parameters and orientation in statistical methods of information processing	-
5.2. General procedure of information processing by statistical methods	151
5.3. Peculiarities of statistical processing methods application at estimating orbit	172
parameters	1/2
Chapter 6. AES inertial navigation and orientation systems	178
6.1. Construction principles and classification of AES inertial navigation and orientation systems	l -

orientation systems

6.2. Functioning algorithms of AES strapdown inertial navigation systems	in 206
orientation mode (on passive flight phases)	
6.3. Operation algorithms of AES strapdown inertial systems in navigation an orientation problem solution mode on active flight phases	^d 222
Chapter 7. AES integrated onboard navigation and orientation systems	228
7.1. Structure, arrangement and composition of integrated onboard navigation an orientation systems for AES	d_
7.2. Astroinertial measuring unit	234
7.3. Functioning algorithms of integrated strapdown inertial navigation an orientation systems (SINOS) in orientation mode	^d 249
7.4. Algorithms of SINOS drift astrocorrection in orientation mode	263
7.5. Algorithms for solution of navigation and orientation problems in emergence conditions	
Chapter 8. Methods for accuracy estimation of AES navigation an orientation problems solution by onboard autonomous systems	d 276
8.1. Problems and possible ways of accuracy estimation of AES navigation ar	d_
orientation problems solution	
8.2. General procedure for navigation accuracy estimation at processing by the method of least squares	
8.3. Ways and possibilities of obtaining analytical accuracy estimates by using the results of statistical processing of discrete measurements	^e 283
8.4. Methods for accuracy estimation of AES navigation and orientation problem	าร
solution by imitation mathematical simulation	307
solution by imitation mathematical simulation Conclusions	³⁰⁷ 319
-	307
Conclusions	307
Conclusions References	307 319 320
Conclusions References Foreword	307 319 320 3 5
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica	307 319 320 3 5
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems	307 319 320 3 5 ³¹ 14
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems 1.1. Technical System Hardware Reliability. Probabilistic Assessment	307 319 320 3 5 5 14 14
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems 1.1. Technical System Hardware Reliability. Probabilistic Assessment 1.2. Simple Flow of Events and Markov Models for Technical System Operation	307 319 320 3 5 14 14 19
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems 1.1. Technical System Hardware Reliability. Probabilistic Assessment 1.2. Simple Flow of Events and Markov Models for Technical System Operation 1.3. Reliability of Redundant Technical Systems	307 319 320 3 5 14 14 19 26 35
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems 1.1. Technical System Hardware Reliability. Probabilistic Assessment 1.2. Simple Flow of Events and Markov Models for Technical System Operation 1.3. Reliability of Redundant Technical Systems 1.4. Monitoring and Diagnostics of Technical Systems Chapter 2. Error Model and Information Reliability Assessment of	307 319 320 3 5 4 14 19 26 35
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems 1.1. Technical System Hardware Reliability. Probabilistic Assessment 1.2. Simple Flow of Events and Markov Models for Technical System Operation 1.3. Reliability of Redundant Technical Systems 1.4. Monitoring and Diagnostics of Technical Systems Chapter 2. Error Model and Information Reliability Assessment of Navigation Systems	307 319 320 3 5 14 14 19 26 35 5 6 4
Conclusions References Foreword Introduction Chapter 1. Foundations of General Reliability Theory for Technica Systems 1.1. Technical System Hardware Reliability. Probabilistic Assessment 1.2. Simple Flow of Events and Markov Models for Technical System Operation 1.3. Reliability of Redundant Technical Systems 1.4. Monitoring and Diagnostics of Technical Systems Chapter 2. Error Model and Information Reliability Assessment of Navigation Systems 2.1. Characteristics of Scalar Random Processes	307 319 320 3 5 14 14 19 26 35 of 42 44

2.5. NS Information Reliability Assessment under Diffusion Error Models	74	
2.6. NS Information Reliability Assessment under Jump Error Models	81	
Chapter 3. Information Failures and Malfunctions in Navigation Systems. Monitoring and Diagnostics Methods	89	
3.1. Monitoring and Diagnostics of Information Failures and Malfunctions as a Decision Problem	89	
3.2. Review of Known Approaches to Solving Monitoring and Diagnostics Problems for Information Failures and Malfunctions	96	
3.3. Estimation of Determined Dynamic System State	100	
3.4. Optimal Estimation of Stochastic Dynamic System State	107	
3.5. Monitoring and Diagnostics of Information Failures and Malfunctions in NS by Optimal Methods for Multiple-Choice Filtration		
3.6. Monitoring and Diagnostics of Information Failures and Malfunctions in NS by Suboptimal Methods for Multiple-Choice Filtration	129	
Chapter 4. Information Failures and Malfunctions of Navigation Systems.		
Examples of Monitoring and Diagnostics	137	
4.1. Monitoring of Satellite Navigation System Integrity	137	
4.2. Monitoring and Diagnostics of Information Failures in Redundant Autonomous System of Marine Navigation	146	
4.3. Monitoring and Diagnostics of Information Failures in Low Redundant Autonomous System of Marine Navigation	157	
Appendix 1. General Concepts of Probability Theory	175	
Appendix 2. Riccati Equation Solution	181	
Appendix 3. Probability of 1st Order Markov Process Non-Exceedance of a Specified Level at Interval	185	
Appendix 4. Kalman Filter Ratio Derivation	193	
References	200	
On behalf of the Organizing Committee of the 4 th Conference of Young 5 Scientists Navigation and Motion Control		

Session "Smart control systems"

S.N.Vasiliev

Logical approach to dynamic systems control (L e c t u r e)	
E.A.Cherkashin	
Using artificial intelligence for information-control systems	24
T.I.Madzhara	
A computer-aided system for solving optimal control problems	31

Session "Gyroscopic systems"

A.A.Stolbov

On increasing the calibration accuracy of the inertial navigation system 38 based on attitude gyros

A.M.Boronakhin

The use of analytical gyro vertical for navigation on the railway track 45

V.V.Pchelin, A.V.Uskov

A stabilized gyro compass based on a strapdown short-period vertical 53

N.V.Goncharov, Yu.V.Filatov

Development of goniometric methods and means for monitoring the 58 vehicle attitude

Session "Data processing"

L.A.Mironovsky

The theory of invariants and its application in diagnosis (L e c t u r e) 64

Yu.A.Litvinenko

Kalman filter sensitivity to uncertainty of water current when solving the problem of inertial navigation system 83 damping by the log

A.P.Aleshkin, T.O.Myslivtsev

Adaptive empirical estimation of the state vector for a spacecraft under 89 measurement shortage

M.S.Koryukin

The use of neuronet algorithms for processing data from redundant 97 sensors

G.V.Bezmen

The possibility analysis for using neural networks in solving filtering 103 problems

K.Yu.Petrova

Optimization of defect distinguishability in test diagnosis 107

I.S.Kayutin

Study of digital data processing algorithms for an acceleration sensor 115

D.P.Loukianov, A.Ya.Maizelis

Investigation of speed variations for high-speed gas flows in variable cross-section nozzles

V.A.Smirnov

Algebraic synthesis of controllers of gyroscopic stabilization and control129

systems

A.V.Bobkov

A system of positioning by the terrain image on the basis of line set $$137\ \ensuremath{\text{analysis}}\xspace$

Session "Sensors of navigation and control systems"

M.I.Evstifeev, M.F.Smirnov, A.A.Untilov

The analysis of mechanical, electrical and thermal characteristics in designing a micromechanical gyro

D.P.Loukianov, I.Yu.Ladychuk

Study of microaccelerometers using surface acoustic waves	149
Yu.V.Shadrin, S.G.Kucherkov	
Dynamic characteristics of a ring micromechanical gyro with the open	155
Іоор	100
Yu.V.Povodyrev, S.M.Dyugurov	
Development of methods and means to increase the accuracy of the	160
angular data pickup system of a strapdown electrostatic gyro	100
V.N.Khodurov	
Experimental investigation into the thermal drift of fiber-optic gyros	165
D.I.Lychev, S.G.Kucherkov	
A precision rotary test bench for testing a micromechanical gyro	171

Session "Control theory and systems"

V.O.Nikiforov

Control of vehicles with roughly known characteristics: roughness, 177 adaptation and robustness (Lecture)

V.O.Rybinsky

Robust stabilization of linear periodic systems 188

K.Yu.Polyakov

Ultimate possibilities of smoothing random processes using 196 continuous-digital filters

O.E.Yakupov

An adaptive electro-hydraulic servo drive of the aircraft 203

T.V.Turenko

A hybrid model of the direct digital control system with a unitary-code 211 sensor

A.G.Klimenkov, A.L.Starichenkov, T.S.Chernysheva

Session "Electronic and electromechanical devices of navigation and control systems"

V.D.Aksenenko, S.I.Matveev

Synchronous demodulation using the digital signal processing technique 225

Ya.V.Belyaev, Ya.A.Nekrasov

The methods for estimating the accuracy of a temperature stabilization 229 system using the software for thermal fields calculation

A.M.Richnyak

A superconductive geomagnetic motor for spacecraft orientation and stabilization systems

Session "Computer technologies in navigation and control"

A.A.Belash, S.S.Gurevich

The central computer of the strapdown inertial attitude system and its 241 software

D.A.Tomchin

The virtual laboratory for study and control of a single-rotor vibration 246 bench

S.N.Turusov, O.Yu.Lukomskaya

The system of informational support for organizational readiness of the 253 ship's crew

Session "Ship navigation"

A.V.Ulanov

The analysis of alternative approaches to managing the controlled motion of an underwater gliding vehicle	ⁿ 261
I.F.Shishkin, A.G.Sergushev	
Using the science about tracks in water areas	268
A.G.Shpektorov, V.A.Zuev	
Stabilization of a high-speed vehicle at the prescribed route	274
N.V.Kuzmina	
Contrasting color of auxiliary information in the marine direction-finder	280

Session "Integrated navigation and orientation systems"

A.M.Boronakhin, A.V.Kazantsev. S.A.Karpasov

The results of experimental investigations of the navigation system on 286 the railway as a part of the track measurement car CSRI-4

S.V.Ignatiev

A stabilized gyrocompass based on fiber-optic gyros with rotating sensor 291 unit

A.A.Pisarevsky, A.N.Doronin

The integrated system for aircraft	299
Yu.V.Gavrilenko, N.A.Zaitseva, E.V.Kochneva	

Suboptimal double-step filter for special navigation problems	303

Round table

"The results and forms of holding a conference using the Internet"

Yu.A.Litvinenko, O.A.Stepanov, D.O.Taranovsky

List of authors 33	15
and Motion Control using the Internet	09
The experience in holding the conference of young scientists <i>Navigation</i>	00

List	o t	authors	15	1

Foreword

Gravimetry

5

14

21

L.K. Zheleznyak, V.N. Koneshov

Up-to-date methods for studying gravity field of the World 9

ocean

L.K. Zheleznyak

The Russian marine gravimetric system

A.V. Sokolov, S.V. Usov, L.S. Elinson

Gravity survey in conditions of marine seismic work

B.A. Blazhnov, L.P. Nesenjuk, V.G. Peshekhonov, A.V. Sokolov, L.S. Elinson, L.K. Zheleznyak 33 An integrated mobile gravimetric system. Development and test results V.N. Ilyin, Yu.L. Smoller, S.Sh. Yurist A mobile ground-based gravity meter. Development and test 45 results V.N. Berzhitzky , V.N. Ilyin , E.B.Saveliev, Y.L. Smoller, Yu.V. Bolotin, A.A.Golovan, N.A.Parusnikov, G.V. Popov, M.V. Chichinadze 48 GT-1A inertial gravimeter system design experience and results of flight tests O.A. Stepanov, B.A. Blazhnov, D.A. Koshaev The efficiency of using velocity and coordinate satellite 61 measurements in determining gravity aboard an aircraft Yu.I. Nikolsky Problems of reduction in high-accuracy gravity measurements 75 in geodesy and geology

Gravity gradiometry

State and prospects of gravity gradiometry development

A.B. Manukin

Design of a measuring system for a highly sensitive gravity	105
gradiometer using vertical pendulums	
M.S. Petrovskaya, G.B. Volfson	
Construction of geopotential models by the satellite	111
gradiometry data	
V.G. Peshekhonov, G.B. Volfson	
Problem solution for design of a gravity variometer operating	118
on a moving base	
G.B. Volfson, M.I. Evstifeev, V.G. Rozentsvein, M.P. Semenova,	
Yu.I. Nikolsky, E.V. Rokotyan, S.F. Bezrukov	122
A new generation of gravity variometers for geophysical	122
investigations	

Borehole navigation

A.A. Molchanov, G.S. Abramov

Navigation in investigation of underground space in searching, 136 exploring and developing mineral deposits

146

V.G. Rozentsvein

State of the art of borehole gyroscopic navigation systems

E.V. Freiman, S.V. Krivosheyev, V.V. Losev

Peculiarities of attitude algorithm construction for gyroscopic	168
inclinometers based on a single-axis gyrostabilizer	
N.P. Rogatykh	178
Methodical aspects of inclinometer design	
V.M. Suminov, D.V. Galkin, A.A. Maslov	190
A mathematical error model of a gyro inclinometer	