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Abstract: Algorithms for detecting the runway contours in video images based on YOLOv8 neural network are presented, differ-
ing by the types of problems it is trained to (detection, segmentation, pose estimation). The accuracy and speed of these algorithms 
run on NVIDIA Jetson NANO computer module are analyzed. Using the analysis results, the best detection algorithm is selected 
based on certain parameters (speed, accuracy, range). The results confirm that the algorithm can be applied in onboard software 
of unmanned aerial vehicles (UAV).  
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1. INTRODUCTION

Normally, the coordinates of UAV at all flight 
stages are determined by means of a satellite naviga-
tion system (SNS). It has high accuracy (especially in 
the differential mode), but is susceptible to artificial in-
terference. A computer vision system can be a compact 
and autonomous solution, when the UAV is equipped 
with a video camera, and the navigation solution (co-
ordinates, speed) is generated by analyzing the ob-
tained image. 

The task of determining an object’s own position in 
the computer vision is called pose estimation [1]. Its 
solution can be based on various principles. For exam-
ple, in the review article [2], video navigation algo-
rithms are considered, where a digital map is used as a 
priori information, and the coordinates are determined 
by matching a photo image obtained in flight with the 
reference. The authors of [2] propose to divide the im-
age-based navigation algorithms into the following cat-
egories: 

1) algorithms involving the correlation-extreme ap-
proach; 

2) algorithms using the feature points;

3) algorithms using the neural networks (NN).

At best, these algorithms ensure the accuracy at the
SNS level (without differential mode), but in fact it is 
often lower: the average Euclidean distance (AED) rel-
ative to the SNS is usually 15–20 m. This error is ac-
ceptable for the modes where precise positioning is not 

required (for example, en-route flight), but it is abso-
lutely inappropriate for landing (5.6 m in the horizontal 
plane [3]). 

Another principle is based on determining the posi-
tion of the camera relative to the subject with a priori 
known coordinates set in some global coordinate 
frame. Then the problem is solved by the photogram-
metry methods [4], such as Perspective-n-Point (PnP) 
(i.e., perspective of the n-th number of points) [5]. 

In [6], it is proposed to use the PnP method to deter-
mine the UAV coordinates during gliding, relative to 
the infrared (IR) beacons installed near the runway. 
The coordinates of the IR-beacons are considered to be 
known a priori. The error in determining the UAV's 
own 3D coordinates at the final stage of gliding is less 
than 1 m. This result fully satisfies the requirements for 
landing errors, so the PnP method can be taken as the 
main one for generating a navigation solution in the 
proposed conditions. However, the beacons installa-
tion and maintenance complicate the ground infra-
structure of the airfield. Therefore, the corner points of 
the runway can act as an alternative to visual markers, 
since their coordinates are also known a priori from the 
atlases of airfield navigation charts. The accuracy of 
the PnP method depends directly on the accuracy of the 
a priori points (the runway corners) found in the image. 

This article is dedicated to the problem of runway 
recognition in a video during the UAV landing in the 
absence of SNS signals, i.e. when the UAV’s own co-
ordinates are unknown. Three algorithms using the 
YOLOv8 NN trained for different target functions are 
compared. 
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The input parameters for solving the problem are 
the color video image from the on-board camera and 
the a priori known coordinates of the runway, and the 
result should be the coordinates of the vertices of the 
runway contour seen in the image. 

The structure of the work is as follows. Section 1 
reviews the work related to the subject area and pro-
vides the reasons for the need to develop a new algo-
rithm for runway recognition. In section 2, the problem 
statement is formalized and various options for NN op-
erations with an image are considered: detection, seg-
mentation, and pose estimation. The use of the latter 
two operations as part of runway recognition algo-
rithms is described in the same section, and detection 
is discussed further. Section 3 describes a runway 
recognition algorithm implemented with NN-detection 
of an area of interest and subsequent post-processing: 
highlighting the contrasting corners of a given area, ap-
plying the BEV transformation to them, and searching 
for a rectangular shape most similar to a landing run-
way, using a genetic algorithm. In section 4, a method 
is proposed for collecting a learning dataset (using a 
flight simulator) and its automatic labeling. Section 5 
describes simulation where the performance of the 
recognition algorithms based on all three approaches is 
assessed. The main conclusions are presented in the fi-
nal section.  

2. WORKS IN THE SUBJECT AREA 
CONCLUSION 

Let us review the publications on runway 
recognition. 

The paper [7] describes a study involving a flight 
simulator. For the convenience of recognition, 
contrasting landmarks free of IR radiation are placed in 
the corners of the runway. The algorithm of the runway 
search in the image is based on the classical computer 
vision techniques: binarization, Canny edge extraction, 
and Hough transform. According to the simulation, the 
recognition range was 1200 feet (~365 m). 

In [8], the authors use the markings at the beginning 
of the runway to detect the runway in the image. It 
looks like the road marking of a pedestrian crossing, 
i.e., a series of contrasting rectangles. The runway 
markings are standardized, so their parameters can be 
used as a priori information for the PnP. The 
disadvantage of this solution is that the markings are 
hardly distinguishable at long distances. The authors 
point out that during the tests their algorithm started 

working from a distance of 718 m to the runway 
threshold. 

In 2018, Airbus together with Wayfinder launched 
the Autonomous Taxi, Take-off and Landing 
(ATTOL) project [9]. Within its framework, an 
automatic landing system was introduced in 2020, 
which implemented runway recognition using artificial 
intelligence [10]; however, the specific type and 
architecture of the predictive model are not disclosed 
in open sources. 

In 2019, a team from the Technical University of 
Munich presented a project of the C2Land automatic 
landing system [11]. To conduct field tests, the system 
was installed on a Diamond DA42 light-engine 
aircraft. In [12], the authors describe in detail the 
C2Land architecture and the computer vision unit. 
C2Land uses the readings from a strapdown inertial 
navigation system (SINS) and images from two 
cameras (optical and infrared ones) (Fig. 1). The 
runway is recognized in the images and the relative 
location of the aircraft is determined, which is then 
estimated in conjunction with other sensors. 

 

Fig. 1. Frames from optical (left) and infrared (right) cameras 

In [13], the authors assessed the performance of 
C2Land. The infrared camera consistently recognized 
the runway from about 1500 m away, while the RGB 
camera did so from 500 m. 

Let us estimate the minimum required distance of 
runway detection Dmin. According to the aviation reg-
ulations [14] based on the ICAO requirements, the con-
cept of the minimum descent height (MDH) is intro-
duced. This is an altitude below which the descent is 
prohibited if there is no stable visual contact with the 
runway. The go-around procedure starts at the calcu-
lated point of intersection of the descent trajectory 
(glide path) with the MDH level. The MDH calculation 
for an inaccurate instrumental approach takes into ac-
count the height of obstacles on the descent path and 
the fixed elevation above them, which can be up to 90 
m, depending on various conditions [14]. We consider 
the ideal case when the height of obstacles compared 
to the elevation can be ignored, and calculate the dis-
tance of the MDH intersection with a standard glide 
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path [15] (slope 3°, the threshold exceeded by 15 m) 
relative to the runway threshold: Dmin = (90 – 15) / 
tan3° ≈ 1430 m (Fig. 2). 

 
Fig. 2. Illustration to calculation of the minimal distance of run-

way recognition. 

In the papers mentioned above, C2Land reaches the 
highest distance of recognition, but it practically coin-
cides with the minimum value. Analysis of open 
sources has shown that there are no solutions with run-
way recognition distance significantly exceeding Dmin. 
At the same time, the problem under study is relevant, 
and large companies such as Airbus are engaged in its 
solution. The difficulty of recognition lies in the fact 

that the runway size in the frame is not constant; it 
changes as the aircraft is approaching. In order to 
achieve a better recognition distance, some algorithms 
based on the use of a NN are proposed and analyzed in 
this paper. 

3. NEURAL NETWORK IN RUNWAY 
RECOGNITION TASK 

As was mentioned above, the corner points are of 
the main interest in the runway recognition problem in 
terms of the navigation solution generation. Therefore, 
we will introduce the assumption that the runway in the 
image is correctly approximated by an irregular tetra-
gon. The task is to find the runway corners in an image 
obtained from a camera mounted on the UAV (resolu-
tion, focus, and other camera characteristics are 
known). The developed algorithm that solves this 
problem is based on the YOLOv8 NN [16]. This archi-
tecture was chosen because the YOLO family shows 
the best performance when working in real time due to 
the search for objects in one scan of the image [17]. 

The selected NN within the framework of the devel-
oped algorithms can be used for solving the three tasks 
shown in Fig. 3. 

 
Fig. 3. Illustration to the tasks solved by YOLOv8. 

Detection is the simplest task for a NN. The coordi-
nates of the bounding rectangle, which is actually the 
area of interest, are formed on its output layer. To find 
the corner points of this area, some additional algo-
rithms are required, which will be discussed in the next 
section. 

In the segmentation task, a mask containing the run-
way is formed on the NN output layer (Fig. 4a). To de-
tect the runway corners, the following algorithm is 
used: the mask outline along its perimeter is formalized 
by an approximating contour selected using the Doug-
las–Peucker algorithm [18], and then an oriented rec-
tangle of the minimum area is described around the 

contour (Fig. 4b). According to the direction of its ori-
entation, a rectangular 2D coordinate frame (CF) is es-
tablished in the center, and in each of its quadrants the 
contour point furthest from the abscissa axis is selected 
(Fig. 4c). 

The pose estimation task is originally intended for 
identifying the feature points in an image of the human 
body. In this mode, the NN can be further learned to 
search for other feature points, such as runway corners. 
This approach is interesting because the final result, 
i.e., the coordinates of the runway corner points, will 
be generated on the NN output layer without any addi-
tional processing. 

 

ALGORITHMS OF RUNWAY DETECTION 23

GYROSCOPY AND NAVIGATION Vol. 16 №1 2025



 

Fig. 4. Runway corners detection using a segmenting NN 

4. RUNWAY RECOGNITION USING  
A DETECTING NEURAL NETWORK 

As was noted earlier, the detecting NN forms a rec-
tangular area of interest, containing the desired object. 
We will select all the contrasting corners in this area 
using the Shi-Tomasi detector [19] (Fig. 5). 

 

Fig. 5. Corners selection by the Shi-Tomasi detector. 

A cloud of feature points marked in blue is formed 
at the detector output. It is necessary to identify four 

points in the cloud that relate to the runway corners 
(marked in red). It is difficult to do this in the initial 
frame, because when shot from different angles, the 
runway can take the shape of a trapezoid or a parallel-
ogram (in other words, an irregular tetragon). In reality, 
the runway has a strictly rectangular shape and retains 
it when viewed from above. This fact will help us in 
the future, so we will use projective transformations to 
bring the image in the frame to the top view. 

Correction of Projective Distortions  
and BEV Transformation 

Homography is a special case of perspective trans-
formation, namely the perspective transformation of a 
plane, i.e., mapping the points of a 2D flat surface onto 
the photomatrix screen plane. We assume that the run-
way surface is close to flat. Figure 6 shows the perspec-
tive correction problem statement: the perspective of 
camera position 1 needs to be brought to position 2 (top 
view), where P is some point belonging to the area of 
interest. 

 
Fig. 6. Perspective correction 

The transformation that brings a perspective to a top 
view is called Bird’s Eye View (BEV) [20]. Its homog-
raphy matrix is written as 

S2 S1

fix1К2 fix 2 К1 S1
fix22 C2 fix1 C1

,

,S

P H P

H D D D D D

 

    
 (1) 

where РS1, РS2 are the screen coordinates of point Р in 
positions 1 and 2, respectively; Н is the homography 
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matrix; S1
C1D  is the matrix of transition from screen co-

ordinates  1 to the camera coordinate frame CF 1; C1
fix1D  

is the matrix of transition from the camera CF 1 to the 

fixed CF 1; 
fix1
fix2D  is the rotation matrix with displace-

ment from the fixed CF 1 to the fixed CF 2; fix2
C2D  is the 

matrix of transition from the fixed CF 2 to the camera 
CF 2; C2

S2D  is the matrix of transition from the camera 
CF 2 to the screen coordinates 2.  

The pinhole is used as the camera model. Its co-
ordinate transformation matrix is traditionally [1] 
written as 

2 1 1
2 1

0

( ) 0 ,

0 0 1

x x
C S
S C y y

f c

D D f c

 
    
  

 (2) 

where fx, fy is the camera focal point in the horizontal 
and vertical directions of the photomatrix (we assume 
by default that fx = fy = f); cx, cy are the screen center 
coordinates. 

In order to not distort the classical form of the ma-
trix of camera parameters (2), the camera CF and the 
fixed CF were presented as different coordinate 
frames. Their mutual transformation is carried out by 
the matrix 

fix2 C1 1
C2 fix1

0 0 1

( ) 0 1 0

1 0 0

D D .

 
    
  

 (3) 

Detailed derivation of matrix 
fix1
fix2D  is described in 

[21]. Using the notation adopted in this paper, the final 
result can be written as follows: 

fix1
fix1 fix1 2 0
fix2 fix2

1

,
Tt n D

D D
h

   (4) 

where fix1 0 fix1
fix2 fix2 0D D D  is the rotation matrix between 

the fixed coordinate frames; fix1
0D  is the matrix of rota-

tion from the 1st fixed CF to the normal Earth CF  re-
lated to point P; 0

fix2D  is the matrix of rotation from the 

normal CF to the 2nd fixed CF; h1 is the height of the 
1st position of the camera relative to the runway;  
nT = [0,1,0] is the normal to the runway surface; t2 is 
the displacement of the 1st fixed CF relative to the 2nd 
fixed CF in the 2nd fixed CF. 

All rotation matrices included in (4) are calculated 
using the attitude angles generated by the onboard 
SINS. The height h1 can be measured with a barometric 
altimeter. In (4), displacement t2 remains unknown. 
The coordinates of point P in the normal CF related to 
the position 1 are: 

1 1
fix1

1 0 1

11

( 0) ,
g

g

g

X X

Y Y

ZZ

P P

P D , , P

PP

                    

 (5) 

where PX1g, PY1g, PZ1g are the coordinates of point P in 
the normal CF (from Fig. 7 1 1gYP h  ); γ, ϑ, ψ are roll, 

pitch and yaw; PX1, PY1, PZ1 are the coordinates of point 
P in the 1st fixed CF. 

The term ψ = 0 emphasizes that all CF are aligned 
with the current heading of the UAV (further we will 
write fix1

0D  meaning the rotations only in roll and pitch), 
which means that this angle can be ignored. The coor-
dinates in the fixed CF can be expressed in terms of the 
point viewing angles the tangents of which are deter-
mined by the formulas 

( ) cos
tan , tan ,y yx x

P cP c

f f

  
     (6) 

where μ, φ are the azimuth and elevation angle, respec-
tively; Px, Py are the screen coordinates of point P. 

The coordinates from the fixed CF are combined 
with the viewing angles by formulas 

1 1

2 2
1 1 1

tan , tan .Z Y

X X Z

P P

P P P
   


 (7) 

We express the coordinates from (7) in terms of the 
viewing angles and PY1: 

 

   

1 1 1 1

1 1

2 22
1 1 1

1
11 1

1
1 1

1

tan tan

tan tan
tan 1 tan

sin
tan

tan
cos

cos
tan

tan

Z X Z X

Y Y

X X X

Y
ZZ X

Y
X Y

X

P P P P

P P

P P P

P
PP P

.P
P P

P

      
 

     
      

             

 (8) 
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Now we substitute the result of (8) in (5): 

1

1 1 1 1
св1 св1

1 0 1 1 1 0 2

1 1 1 31

cosμ cosμ

tan tan φ

1 .

sin sinμ

tanφtan

g g

g

g
g

Y

X X Y

Y Y Y

Y Z YZ

P
P P / P b

P D P h / P D b

P P / P bP

   
                                                    

 (9) 

 

If we put the PY1 coordinate outside the brackets and 
divide both sides of the equation by this value, it turns 
out that everything is known on the right side. To 
shorten the record, we will replace the right sides with 
b1...3. We find the coordinates of point P from (9): 

1
1

1 2

1 1

31
1

2

g

g

g

X

Y

Z

b
h

P b

P h .

bP
h

b

  
       
    
  
       
   

 (10) 

Since the camera at position 2 is located exactly 
above point P, the coordinates of camera 1 relative to 
2 in the normal CF related to position 2 will be deter-
mined by the formula 

1

0 2 1

1

g

g

X

Z

P

t h h

P

 
 

  
  

 (11) 

Next, to determine the desired displacement t2, it is 
necessary to rotate the vector t0 using matrix 0

2D . We 
assume that the camera in position 2 has the attitude 
angles γ = 0, ϑ = –90°: 

1 1 2 1
0

2 2 2 1 2 1 1

1 1 1

0 1 0

1 0 0

0 0 1

g g

g

g g
g

X X

X

Z Z Z

P P h h

t D h h h h P

P P P

                                         

 (12) 

The user can adjust the height h2 depending on the 
task. Thus, all the matrices in equation (1) are defined, 
which makes it possible to calculate the homography. 
After multiplying the initial frame by the homography 
matrix, we obtain the result shown in Fig. 7. 

 
Fig. 7. The result of perspective correction. 

 

It should be noted that Fig. 7 demonstrates the cor-
rectness of formulas described in this section, while 
changing the perspective of the entire frame does not 
make practical sense. Within the framework of the al-
gorithm being developed, the BEV transformation is 
applied only to the coordinates of the feature points. 

 

Selection of Feature Points. Genetic Algorithm 

After re-projecting the feature points to the top 
view, the task is to select four points that form a rectan-
gle with the geometric dimensions closest to the run-
way (the runway characteristics are taken from the aer-
onautical atlas). To determine the linear distance be-
tween the points being viewed, it is necessary to calcu-
late the unit value of pixel. To do this, let us study 
Fig. 8. 

 
Fig. 8. Determining the pixel unit value: FOV = the field of view, 

W = the field of view width, M = photomatrix width. 

The pixel unit value can be found from the similar-
ity of triangles: 

,
W h ps

M f


  (13) 

where ps is the linear size of one pixel (we assume that 
the pixel is square-shaped). 

FOV 
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Complete search of all combinations for 72 points 
will amount to more than one million variants, which 
will significantly reduce the speed of the entire algo-
rithm. Therefore, the genetic algorithm (GA) is used in 
this work to optimize the search. In terms of this ap-
proach, each point will be a gene, and the combination 
of four points will be an individual (a chromosome). 
Thus, the initial task is to find an individual with the 
best fitness function, which will be revealed during the 
evolutionary process. 

The fitness function should be a simple algebraic 
function, because it will be addressed frequently at 
each step of the calculation. In this case, it has the 
meaning of the accuracy factor and is implemented in 
the form of criteria combined by the Chebyshev meas-
ure [22]: 

1

min = 0

min , ..., ,

max-val val
1 ,

max-min max

n

i i

PF q q

q q

  

   
 (14) 

where PF is the fitness function, and qi is the normal-
ized criterion. 

The second formula denotes the normalization of 
a criterion of the form “the less, the better” [23], 
where max, min are the maximum and minimum val-
ues of the criterion; val is the current value of the 
selected criterion. 

A priori information about the geometric dimen-
sions of the runway is used as the reference. We denote 
the reference perimeter, threshold lengths, and area as 
PR, WR, and SR, respectively. The fitness function is 
made up of four criteria: 

1) 1

2
1 S i

S

P P
q

P


   is the similarity of perimeters, 

where Pi is the perimeter of the i-th solution; 

2) 2

2
1 S i

S

S S
q

S


   is the similarity of areas, 

where Si is the area of the i-th solution; 

3) 3

2
1 S Ni Fi

S

W W W
q

W

 
   is the parallelism of the 

lateral boundaries, where WNi, WFi are the lengths of the 
near and far thresholds of the i-th solution; 

4) 4

0 5
1

0 5
i.

q
.


   is the similarity of directions, 

where Ψi is the direction of the i-th solution, defined as 

2 2
arccos( ) 57 3Y

i

X Y

a
.

a a


  


; (aX, aY) is the center-

line vector of the i-th solution. 

The canonical evolutionary process implemented in 
the algorithm under development consists of the fol-
lowing stages [24] (the terms used in the GA descrip-
tion are indicated in parentheses): 

1) formation of a sample (population); 

2) selection of the best candidates (selection of par-
ents); 

3) crossing (crossing-over); 

4) random changes (mutation); 

5) breeding; 

6) algorithm termination criterion. 

The behavior of the algorithm strongly depends on 
the population size set at the first stage. To select the 
optimal size in terms of the speed-to-accuracy ratio, an 
experiment was conducted: for the same set of points, 
100 iterations of solving the problem of finding the fit-
ness function maximum with different population sizes 
(from 2 to 20 individuals) were performed. The aver-
age result of the experiment is shown in Fig. 9. 

 
Fig. 9. Experiment to determine the optimal population size 
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It was found from the experiment that the increase 
in accuracy slows down when the number of individu-
als in the population grows above 8, and is only 1% for 
20 individuals. Therefore, a population of 8 individuals 
is further created. 

5. LEARNING METHODOLOGY

In this work, the open-access flight simulator 
FlightGear is used for collecting the learning data and 
testing the trained NN [25]. Special software has been 
developed, where landing is programmed in the speci-
fied flight simulator at Sheremetyevo airport on the 
runway with the code 06R/24L. The runway character-
istics are as follows: length 3700 m, width 60 m, head-
ing 75° [26]. During each landing, the screen and all 
current navigation characteristics were recorded. The 
output were videos and navigation log files linked to 
frames. 

At the next stage, the collected materials need to be 
processed, labeled, and prepared for NN learning. It 
takes too long to do this manually, so it became neces-
sary to automate the process. For this purpose, addi-
tional software has been developed; it splits the video 
into frames with a set frequency and performs labeling. 
It is based on the calculation of the screen coordinates 
of runway corners using homography: 

C fix Run
S C fix;

X
x

Y
y

Z

P X
p

H P Y H D D D ,
p

P Z

 
             

 (15) 

where px, py are the screen coordinates of corner 
point; PX, PY, PZ are the coordinates of corner point in 
the runway CF; X, Y, Z are the coordinates of the sur-
vey point in the runway CF; 

Run NECF Run
fix fix NECF Run(γ,ψ,J) (ψ )D D D   is the matrix of rota-

tion from the runway CF to the fixed CF (NECF is the 
Normal Earth Coordinate Frame, ψRun = 75º). 

Orientations of the mentioned coordinate frames are 
shown in Fig. 10. 

Fig. 10. Orientations of the CF used. 

The calculated screen coordinates of the corner 
points are converted to text for labeling in YOLO for-
mat [27]. Thus, the developed software for automatic 
labeling made it possible to create a dataset of about 
3000 images of runway at different distances and at dif-
ferent times of the day (morning, afternoon, evening). 
The NN learning was performed in the Google Colab 
cloud environment [28] using the Ultralytics frame-
work [29]. Since the algorithms being developed are 
supposed to be used in UAV on-board equipment, 
which limits the recognition time, the YOLOv8n archi-
tecture with a small number of parameters was used for 
learning. It was trained to solve the three tasks de-
scribed above. Some of the resulting parameters and 
metrics are presented in Table 1. 

Table 1. YOLOv8n learning results 

Task Resolution mAP 50 mAP 50–95 

Detection 288×288 0.67 0.6 

Segmentation 384×384 0.48 0.35 

Pose estimation 416×416 0.71 0.64 

The mAP (mean Average Precision) metric is a gen-
erally accepted metric for assessing the quality of NN 
learning [30]. It is measured in the range from 0 to 1 
and shows how accurate the NN is on average on a cer-
tain dataset at different operating thresholds, which 
means the degree of overlap between the found and ref-
erence objects in the image, expressed as a percentage 
(mAP 50 – for the threshold of 50%, mAP 50-95 – av-
eraging for the threshold range of 50-95%). A detailed 
mAP calculation is described in [31]. As can be seen in 
Table 1, segmentation is the worst task to be learned 
(each task was trained on the same dataset for an equal 
number of epochs). 

The original resolution of the training images was 
1920×1080. Then they were compressed to the resolu-
tions indicated in Table 1. The compression resolution 
was chosen so that the total operating time of the algo-
rithms, including post-processing, was no more than 
100 ms, which is the period of the SNS data update (it 
is assumed that the navigation algorithm based on run-
way recognition should have a comparable speed to re-
place that system). With increased resolution, the 
recognition accuracy is higher, while the inference 
time is slower. The performance of the developed al-
gorithms is discussed in the next section. 
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6. SIMULATION AND DISCUSSION
OF RESULTS 

We have studied three runway recognition algo-
rithms using a NN. Figure 11 shows a flowchart of 
their operation, including the selection of a specific al-
gorithm. 

The fitness function (14) is calculated for segmen-
tation and pose estimation, while for detection it will 

be obtained at the stage of GA completion. If the fitness 
function reaches a value of ≥ 0.9, the found corner 
points are tracked in subsequent frames using the Lu-
cas–Kanade optical flow estimation method [32]. This 
helps to remove the random noise of the recognized 
contour, as well as extrapolate the exact solution to 
subsequent frames. If a solution with a high PF has 
been found again, then the tracked points are updated. 

Fig. 11. Flowchart of runway recognition algorithms. 

All three runway recognition algorithms were as-
sessed using previously recorded video materials in the 
simulations with an embedded Jetson Nano single-
board computer [32]. This device supports the graphics 
cores which accelerate the work of NN due to parallel 

computations. Thanks to its small size, Jetson Nano 
can be used on board UAVs. 

To verify the developed algorithms, three critical 
parameters were estimated: speed, recognition accu-
racy, and recognition distance. The NN inference is the 
most time-consuming operation in the created 
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algorithms. In this paper, it is implemented using 
ONNX Runtime [34] for the inference on the central 
processing unit (CPU), and also using NVIDIA Ten-
sorRT [35] for the inference on the graphics processing 
unit (GPU). The accuracy was estimated using the IoU 
(Intersection over Union) metric [36]. It reflects the de-
gree of overlap of the recognized object relative to the 
reference one and is expressed as a percentage. The 

distance was measured relative to the near threshold 
and was fixed at the moment of stable recognition start 
(PF ≥ 0.9). The graph of the IoU change depending on 
the distance to the threshold is shown in Fig. 12.  

The average results of all indicators obtained during 
the experiment are summarized in Table 2. 

Fig. 12. Dependence of IoU on the distance to runway threshold 

Table 2. Comparison of algorithms 

Task Resolution 
Inference, ms Total time, ms 

IoU Distance, m 
CPU GPU CPU GPU 

Detection 288 144 29 177 79 0.92 2950 

Segmentation 384 402 78 408 81 0.71 2150 

Pose estimation 416 324 70 324 70 0.75 2500 

7. CONCLUSIONS

The paper is devoted to the choice of algorithms for 
recognizing the runways in a video image. A review of 
publications in this field has been conducted and it has 
been shown that there are no solutions with a recogni-
tion distance significantly exceeding Dmin = 1430 m 
(calculated based on the minimum height of establish-
ing visual contact with the runway). Three variants of 
the YOLOv8 NN trained for the following operating 
modes have been analyzed: 

1) detection;
2) segmentation;
3) pose estimation.

To collect learning data and generate a dataset, soft-
ware has been developed that allows for automatic la-
beling of video frames, taking into account the task be-
ing solved by the NN. To verify the developed algo-
rithms, software-based simulation was performed us-
ing the FlightGear flight simulator and the Jetson Nano 
computing module. The following results were ob-
tained during the simulation: 

1) the segmentation-based algorithm showed the
lowest accuracy and distance of recognition; 

2) the algorithm based on pose estimation showed a
medium distance of recognition, but was comparable 
to algorithm 1 in terms of accuracy; 

3) the detection-based algorithm showed the highest
accuracy and distance of recognition, as well as ac-
ceptable performance speed. 

Thus, according to the totality of values of the esti-
mated parameters, the detection-based recognition al-
gorithm showed the best result. The recognition dis-
tance of all developed algorithms exceeded Dmin by 
more than 50% and amounted to at least 2100 m. This 
indicates the expediency of the NN use in the task of 
runway recognition instead of classical computer vi-
sion methods. The achieved performance speed is 
comparable to the performance of standard SNS re-
ceivers (100 ms (10 Hz)), which indicates that the pro-
posed algorithms can be used in embedded systems in 
real conditions. 

Distance to runway threshold, m Distance to runway threshold, m Distance to runway threshold, m 
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