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The paper discusses the relationship between Allan variance and error variance of sensor bias estimation obtained by 

averaging over a certain time interval. Allan variance is shown to coincide with this variance in some cases. Thus, Allan 
variance plots can be used to predict the accuracy of bias estimation, which is critical for the sensors whose signals are 
integrated in inertial systems. Improving of bias estimation accuracy using nonlinear filtering methods is discussed. 
 
 
Introduction 

 
Identification of sensor error model and determination of its parameters form an important problem to be 

solved by tests and calibration. Traditionally, algorithms for determining the spectral densities and correlation 
functions are used to design the model of error random components [1-6]. Allan variance method is also 
extensively used [7-13]. New methods are searched for, based, for example, on nonlinear filtering methods [14-
17]. Determination of time-invariant error components (random bias) is also important, especially when the 
signals of sensors incorporated in IMUs are integrated and thus lead to accumulation of errors. Bias is often 
determined by usual averaging of sensor errors over a finite time period. Then the question arises, how the 
averaging time should be rationally selected so that for example error variance of the obtained estimate be 
minimum. On the other hand, the estimate obtained by averaging obviously will not be optimal (in terms of 
minimum error variance) if nonwhite noise components of sensor errors are present. Therefore, bias estimation 
accuracy can also be improved by using more advanced algorithms which are not reduced to simple averaging 
but account for the additional error components. As is known, Allan variance is insensitive to the presence of 
bias, since error increments rather than errors are used to calculate the Allan variance. However, Allan variance 
plots are still used to estimate the so called bias instability [18, 19], which is actually associated with the problem 
of estimating the random bias. Discussion of these issues is given in the paper. 

 
Estimation accuracy of the sensor bias by averaging. Connection with Allan variance 

 
Let the sensor error z t( )  be measured, which can be described in the form 

( ) ( );y t c z t             (1) 

where  is a nonstationary zero-mean random process, c  is the random bias. It is required to estimate c using 

measurements . This kind of problem often occurs in sensor calibration performed at the test bench or in 
comparison of their signals with a reference more precise sensor. It is often solved by simple averaging of the 
measured error over finite time interval , i.е. 

( )z t

y t( )
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0 0

1 1
ˆ ( ) ( )c y t dt c z t
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Obviously, the following can be written for the estimate error and its variance: 
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Considering variance (3) to be the variance of increments of process 
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Assume that the following limiting relationship holds true:  
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meaning that calculation of mathematical expectation in (4) can be replaced with time averaging for one sample.  
It can be easily seen that (5) coincides with the Allan variance [6, 8, 23]. Therefore, Allan variance coincides 

with the error variance of bias estimation calculated by averaging if (5) is valid for process ( , )z t  . Then 

optimal averaging time can be determined by Allan variance minimum point, and thus, corresponding minimum 
error variance of bias estimate found by averaging. Respectively square root of the Allan variance also called the 
Allan deviation [8,9,11] is the same as the root mean square (RMS) for the bias estimation error. The established 
relation seems helpful because it lets assess the accuracy of bias estimation by Allan variance plots insensitive to 
bias. 

Consider an example. Let    
y t x t v t  ( ) ( ) ( ) ,         (6) 

where x t( )  is the random walk (Wiener process) set in the form x qw , 0 0x ( ) ; ,  are independent 

zero-mean white noises with power spectral densities (PSD)  and 

qw v t ( )
2q 2 , noises ,  have unit PSDs. In 

other words, process  is a sum of random walk and white noise. Searching for estimate in the form (2), we 
can write:  

w t( ) v t( )
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1
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
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It can be easily seen that the following relation is true for estimate error variance:  
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       (8) 

Note that squared first and second integrals of white noise are under the signs of mathematical expectation in 
(8). Therefore, these mathematical expectations determine the variances of the first and second integrals. Using 
the known expressions for these variances [6], we obtain the expression 
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22 ˆ
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q
M c c 
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
,    (9) 

coinciding with the Allan variance for the sum of random walk and white noise. Differentiating (9) with respect 
to  and setting the derivative equal to zero provides optimal (in terms of minimum variance) average time and 
corresponding minimum estimate variance:  



3
opt q


  , 2

(min)
2

3
c

q



  .     (10) 

Therefore averaging time optimal in the given sense is directly proportional to the square root of the ratio 
between white noise PSD and PSD of generating noise of random walk, and error variance is directly 
proportional to their product.  
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This example is illustrated by the simulation. Figure 1 shows real bias estimation RMS error calculated using 
500 samples for six various time intervals vs Allan deviation for one sample. Note that the calculated from finite 
length sample AV is the estimate the true AV (5). This explains the incomplete match graphs in Figure 1, 
especially for large averaging time. 

 
 

 
 

Fig. 1.  Real RMS: bias estimation by averaging (left) and Allan deviation (right). 
 

Note that the location of Allan variance minimum point in this statement depends on the ratio between PSDs 
of white noise and generating noise of random walk, as follows from (10). This is also illustrated in Fig. 2 
showing Allan variances for four variants of error components 

11 1 1 12 1 2 21 2 1 22 2 2(t) (t) (t); (t) (t) (t); (t) (t) (t); (t) (t) (t)y x v y x v y x v y x v        , 

where  
1 1
(t) (t)x q w ;

2 2
(t) (t)x q w .  

 
 

Fig. 2. Allan variance for sum of white noise and random walk of PSDs 2 2
1 2
 , ,  and  respectively 2 2

1 2
q q,

 
Standards [18, 19] introduce the stability as “a measure of the ability of a sensor performance coefficient to 

remain invariant when continuously exposed to a fixed operating condition”. Note that no quantitative measures 
determining this ability are given. Let us discuss the possibility of introducing such quantitative measure for 
random bias of sensor error model (1). Obviously, in this case, the bias non stability is determined by the PSD of 
random walk generating noise q . In [9, 10, 18, 19] the minimum of AV plot is used to characterize bias 

instability in assumption that it is the flicker noise PSD. As follows of the aforementioned results, the AV may 
have an extremum in the absence of flicker noise in the error model. Thus the quantitative measure of stability 
depends on the model. For the model (1) the maximum averaging time leading to an increase in the bias 
estimation accuracy, and the corresponding RMS can be considered as the bias stability characteristic as well. 
However, these values also depend on the white noise PSD (as shown in Fig. 2) and does not consider the 
possibility of bias estimation by other methods, which are discussed below. 
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Improving the accuracy of bias estimation using nonlinear filtering 
 
As mentioned in the Introduction, [15, 16] propose an approach based on nonlinear filtering for 

identification of sensor error models. Its idea lies in finding an optimal Bayesian estimate of composite filter 
including the state subvector of shaping filter of the studied process and the subvector of unknown parameters 
specifying this shaping filter. Following these references, formulate the statement of bias estimation problem 
with inaccurately known parameters of measurement error models. Introduce a composite vector 

, where , , then nonlinear filtering problem in discrete form can be 

written as  
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where  and  are zero-mean Gaussian white noise sequences with unit variance, iw iv t  is the sampling interval.  

Introducing probability distribution function (PDF) ( )f   for vector   and applying partitioning method 

(Rao-Blackwellization method), the following can be written for optimal estimate  and corresponding 

computational covariance matrix 

ˆ ( )i iY
( )i iP Y [14, 20]: 
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where   is the vector of measurements obtained by the time i . A posteriori PDF 
1i

Y y y  ,..., i
 ( / )if Y is 
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where  is the likelihood function. 1 1 2 1θ θ θ( / ) ( / , ) ( / , )... ( / )i i i i if Y f y Y f y Y f y   θ

The distinctive feature of the problem is that with fixed θ θ j , Eqs. (11) set the linear gaussian filtering 
problem, and therefore PDFs  
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where  are also Gaussian. Incoming optimal prediction estimates 1 1H     ; 1
θ )j

i i
X /
ˆ (  and measurement 

residual variances   2

1
θ )cond j j

i i i i
D M y HX  

/
ˆ( ) (

θ( )

θ  are calculated using the bank of Kalman filters. To 

calculate the optimal estimate and conditional covariance matrix (12), the point-mass method can be used. Then 
it is implied that a priori PDF f  is approximated as [14, 22] 
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where θ j , 1.j L  is the set of possible values of parameters defining the point masses. Substituting (15) to 

(13), the following expressions can be written for a postreriori PDF θ/( )if Y : 
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With account for (12), the following relationships can be easily obtained for the estimates and conditional 
covariance matrix: 
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Nonlinear filtering can be used to get the bias estimate and its variance in the form 

 
1

L
j j

i i i i
j

с Y с


 ˆ ˆ( ) , 
1

L
c

i i i i
j

P Y P
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cj j ( ) ,   (18) 

where j cj
i i
с Pˆ ;  are the bias estimates and variances of obtained in each local Kalman filter.  

  
Fig. 3. Allan deviation (1), bias estimation error RMS for 
optimal KF (2), calculated (3) and real (4) bias estimation 

error RMS and bias estimation error sample (5) for adaptive 
filter 

 

Fig. 4. Allan deviation (1), bias estimation error RMS for 
optimal KF (2), calculated (3) and real (4) bias estimation 

error RMS for adaptive filter 
 

  
Fig. 5. Calculated (1) and real (2) estimation error RMS for 

; estimation error sample (3) q

 

Рис. 6. Calculated (1) and real (2) estimation error RMS for 
 ; estimation error sample (3) 

 
The efficiency of the adaptive filtering method have been proved by simulation. The values  and   that are 

determined noise PSDs were assumed as 

q

 0.01 0.21adq    0.1 2.1ad  , and initial bias RMS was 1. The 

simulation results are shown on figures 3-6. In comparison the Allan deviation plot and the RMS error of optimal 
Kalman Filter (KF) bias estimates is shown on figures 3, 4 for   0.11 adq optq M , . 

Figures 3, 4 shows that use of adaptive filtering allows keeping the optimal estimation accuracy for an infinite 
interval, and adaptive filtering accuracy is not very different from KF accuracy for this level of uncertainty. The 
‘real’ RMS value is determined by averaging the estimation error squared (17) (18) using all samples. The 
‘calculated’ RMS value is the square root of the mean value of the variances calculated by (17) (18). T

 ad 1.1M opt 

he 
coincidence of these values indicates the correctness of their calculation. The transition process for model 
parameter estimation is slower compared to the estimation of the bias (Fig. 5.6). Note that the similar problem of 
determining the PSDs of noise components can be solved using the Allan variance as in [16]. The results have 
shown that optimal estimation provides a 3-5 times better accuracy than for the Allan variance method. 

This fact proves that the integrated problem of bias optimal estimation and model identification can be 
efficiently solved by nonlinear filtering methods using the bank of Kalman filters. It should be also noted that in 
designing the error model, both the problems of parameter estimation and structure identification prove 
important [21]. 

 

Conclusions  
 

The paper establishes the relationship between Allan variance and variance of bias estimation error 
received by averaging. These variances are shown to coincide under some conditions. Thus, Allan variance can 
be used to estimate the minimum error variance of bias estimation by averaging and the corresponding averaging 
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time, which is exactly important in sensor calibration. This relationship is illustrated by a model being a sum of 
white noise and random walk.  

The paper discusses an approach improving the bias estimation accuracy with unknown sensor error model  
based on nonlinear filtering methods. It should be also noted that nonlinear filtering provides both estimation of 
error model parameters and identification of model structure. 
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	Because 1/f noise and fractals are so ubiquitous in modeling nature, we expect non-stationary analysis techniques – like in the family of Allan variances – to be useful as efficient time-series analysis metrics. The usage seems to be growing, but there are many areas where these metrics seem to be unknown statistical tools. In my own research, I have shown these variances to be useful in analyzing the stability of gage blocks and volt standards. Richard F. Voss has demonstrated 1/f noise in a large variety of music. Musha and Higuchi have identified 1/f noise in traffic flow. The height of the River Nile at flood stage over the last some thousands of years for which there are data has a 1/f spectral density. Such noise is found in economics, psychology, and in neurons. Pink noise is another name for 1/f or flicker-noise. You will find a fascinating article in Wikipedia on “Pink Noise” – showing its ubiquitous nature – and a large number of references are given there.
	As a fun health example, since neuron noise is 1/f, if you were to stand on one foot and then map the motion of the top of your head, the time series would be a flicker-noise process. If now you get on a bicycle and ride it to follow a straight line, since you have to integrate when riding a bike to maintain balance, the front tire deviations from the straight line will be an f-3 spectral-density process. With a controlled set of parameters, this bicycle balancing activity could be used – using ADEV to analyze the deviations – in a very simple way to access improvement or degradation in your balance. Since I am an avid mountain bike rider, I am observing this phenomenon a lot – especially on a narrow deer trail on a steep slope in the mountains near our home.
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	As mentioned before, if you search using Google for “Allan variance,” there are about 50 thousand results. If you add navigation to that, there are about 3 thousand results. In reviewing some of the 3 thousand I found some very interesting papers. Though I have been around the navigation community and am a Fellow of the Institute of Navigation, I do not consider myself an expert in the literature of this community. I suggest here a few papers, which I found in my search, which I thought were outstanding: Analysis and Modeling of Inertial Sensors Using Allan Variance by El-Sheimy, N., Calgary University ; Haiying Hou ; Xiaoji Niu; Allan Variance Analysis on Error Characters of MEMS Inertial Sensors for an FPGA-based GPS/INS System by Xin Zhang, Yong Li, Peter Mumford, Chris Rizos; School of Surveying and Spatial Information Systems University of New South Wales, Australia; at the following link http://www.vectornav.com/support/library/gyroscope is a fascinating paper on using ADEV to measure gyroscope instabilities; Allan Variance Analysis on Error Characters of Lowcost MEMS Accelerometer MMA8451Q by Marin Marinov*, Zhivo Petrov* (*Aviation Faculty, NVU), V. Levski”, and Dolna Mitropolia, Bulgaria; Modeling Inertial Sensors Errors Using Allan Variance, http://www.ucalgary.ca/engo_webdocs/NES/04.20201.HaiyingHou.pdf  (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) by Haiying Hou September 2004; Department of Geomatics Engineering; A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems by Alex G. Quinchia (Barcelona, Spain), Gianluca Falco (Torino, Italy), Emanuela Falletti (Torino, Italy), Fabio Dovis (Torino, Italy), and Carles Ferrer (Barcelona, Spain); Notes on Stochastic Errors of Low Cost MEMS Inertial Units, Yigiter Yuksel & Huseyin Burak Kaygisiz; Two Methods for the Determination of Inertial Sensor Parameters, Vladimir Vukmirica*, Ivana Trajkovski*, Nada Asanović*; *Military Technical Institute (VTI), Ratka Resanovića, Belgrade, Serbia; and Modified Allan Variance Analysis on Random Errors of MINS by Bin Fang and Xiaoqi Guo, TELKOMNIKA, Vol.11, No.3, March 2013, pp. 1227 ~ 1235 e-ISSN: 2087-278X.  Even though these references are excellent resources in my opinion several of them suffer from the ambiguity problem in ADEV when it behaves as -1 for the quantization noise problem. MDEV is a better metric in this case, as I have cited before.
	Because 1/f noise and fractals are so ubiquitous in modeling nature, we expect non-stationary analysis techniques – like in the family of Allan variances – to be useful as efficient time-series analysis metrics. The usage seems to be growing, but there are many areas where these metrics seem to be unknown statistical tools. In my own research, I have shown these variances to be useful in analyzing the stability of gage blocks and volt standards. Richard F. Voss has demonstrated 1/f noise in a large variety of music. Musha and Higuchi have identified 1/f noise in traffic flow. The height of the River Nile at flood stage over the last some thousands of years for which there are data has a 1/f spectral density. Such noise is found in economics, psychology, and in neurons. Pink noise is another name for 1/f or flicker-noise. You will find a fascinating article in Wikipedia on “Pink Noise” – showing its ubiquitous nature – and a large number of references are given there.
	As a fun health example, since neuron noise is 1/f, if you were to stand on one foot and then map the motion of the top of your head, the time series would be a flicker-noise process. If now you get on a bicycle and ride it to follow a straight line, since you have to integrate when riding a bike to maintain balance, the front tire deviations from the straight line will be an f-3 spectral-density process. With a controlled set of parameters, this bicycle balancing activity could be used – using ADEV to analyze the deviations – in a very simple way to access improvement or degradation in your balance. Since I am an avid mountain bike rider, I am observing this phenomenon a lot – especially on a narrow deer trail on a steep slope in the mountains near our home.




