Gravity-inertial technologies in geophysics

(Collected articles and papers, 199 pages) (in Russian)

Under the editorship of **V.G.Peshekhonov**, Academician of the Russian Academy of Sciences

Author - G.B.Volfson, Doctor of Sciences

Saint-Petersburg, CSRI "Elektropribor", 2002

ISBN 5-900780-40-6

- © SSC RF CSRI "Elektropribor"
- © International Public Organization "Academy of Navigation and Motion Control"

The digest contains papers devoted to gravity-inertial technologies applied to geophysical instrument-making.

Theoretical problems, technical issues, and experience in development and practical use of geophysical equipment in gravimetry, gravity gradiometry and inclinometry of mining holes are considered.

The digest includes four articles from journal "Gyroscopy and Navigation" (1999, 2000, and 2001), two articles from journal "Geophysical equipment" (1999), article from journal "Proceedings of the Academy of Sciences" (1996), three papers presented at the 9th St.Petersburg International Conference on Integrated Navigation Systems (2002), and 8 papers prepared specially for the present edition.

The digest is meant for the specialists involved in development of geophysical equipment, engineers, teachers of higher education institutions, post-graduate students, and students.

CONTENTS

Foreword 5

Gravimetry

L.K. Zheleznyak, V.N. Koneshov

Up-to-date methods for studying gravity field of the World 9

ocean

L.K. Zheleznyak

The Russian marine gravimetric system

14

A.V. Sokolov, S.V. Usov, L.S. Elinson	21
Gravity survey in conditions of marine seismic work	
B.A. Blazhnov, L.P. Nesenjuk, V.G. Peshekhonov, A.V. Sokolov,	
L.S. Elinson, L.K. Zheleznyak	33
An integrated mobile gravimetric system. Development and test	
results	
V.N. Ilyin, Yu.L. Smoller, S.Sh. Yurist	
A mobile ground-based gravity meter. Development and test	45
results	
V.N. Berzhitzky , V.N. Ilyin , E.B.Saveliev, Y.L. Smoller, Yu.V.	
Bolotin, A.A.Golovan, N.A.Parusnikov, G.V. Popov,	
M.V. Chichinadze	48
GT-1A inertial gravimeter system design experience and results	
of flight tests	
O.A. Stepanov, B.A. Blazhnov, D.A. Koshaev	
The efficiency of using velocity and coordinate satellite	61
measurements in determining gravity aboard an aircraft	
Yu.I. Nikolsky	
Problems of reduction in high-accuracy gravity measurements	75
in geodesy and geology	
800 000 0000	

Gravity gradiometry

G.B. Volfson	90
State and prospects of gravity gradiometry development	
A.B. Manukin	
Design of a measuring system for a highly sensitive gravity	105
gradiometer using vertical pendulums	
M.S. Petrovskaya, G.B. Volfson	
Construction of geopotential models by the satellite	111
gradiometry data	
V.G. Peshekhonov, G.B. Volfson	
Problem solution for design of a gravity variometer operating	118
on a moving base	
G.B. Volfson, M.I. Evstifeev, V.G. Rozentsvein, M.P. Semenova,	
Yu.I. Nikolsky, E.V. Rokotyan, S.F. Bezrukov	122
A new generation of gravity variometers for geophysical	
investigations	
Borehole navigation	
A.A. Molchanov, G.S. Abramov	136
Navigation in investigation of underground space in searching,	

exploring and developing mineral deposits

V.G. Rozentsvein	146
State of the art of borehole gyroscopic navigation systems	
E.V. Freiman, S.V. Krivosheyev, V.V. Losev	
Peculiarities of attitude algorithm construction for gyroscopic	168
inclinometers based on a single-axis gyrostabilizer	
N.P. Rogatykh	178
Methodical aspects of inclinometer design	
V.M. Suminov, D.V. Galkin, A.A. Maslov	190
A mathematical error model of a gyro inclinometer	