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Abstract: The error model of the star tracker is presented as a decomposition into fluctuation and systematic components. The 
fluctuation error, which arises in the calculation of the star digital image brightness center coordinates, is due to the discrete 
structure of the signal in the matrix photodetector. When star observations are performed through the atmosphere, the fluctuation 
error has an additional external component associated with the “jitter” of star images caused by atmospheric turbulence. The 
systematic error follows from the calibration errors of the intrinsic parameters of the digital camera. Linearized analytical ex-
pressions and covariance matrices that depend on the configuration of the observed constellation are derived for all components 
of the attitude error. The error model is easy to rewrite as an observation equation for the errors in estimating the camera intrin-
sic parameters in a tightly-coupled integrated astronavigation system. The results of the experimental verification of the pro-
posed error model are discussed. The numerical error values obtained in the experiment make clear the need for regular calibra-
tion of the intrinsic parameters of the star tracker’s digital camera during operation. 
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1. INTRODUCTION  

Measurement of attitude with a star tracker is 
based on the comparison of the measured and catalog 
Cartesian coordinates of unit direction vectors speci-
fying the same star directions (hereinafter referred to 
as star direction vectors). The measured coordinates 
of the star direction vectors are calculated from the 
star field image obtained with a digital camera. The 
corresponding catalog coordinates are derived based 
on the star catalog data. Such a comparison is aimed 
to determine the attitude of the right orthogonal coor-
dinate frame associated with the camera structure 
relative to the right orthogonal inertial coordinate 
frame of the star catalog. The star tracker measure-
ments can be referenced to the Earth’s surface only 
with the use of additional information. Thus, if the 
vertical direction at the observation point is known, 
the star tracker measurements make it possible to cal-
culate the observer’s longitude and latitude, as well as 
the azimuth of the camera’s optical axis. If the geodet-
ic coordinates of the observation point are known, the 
measurements of the star tracker’s attitude (relative to 
the stars) allow calculating its attitude relative to the 
Earth’s topocentric coordinate frame (heading, roll 
and pitch angles). The height above the Earth’s sur-

face is not calculated from the star tracker measure-
ments [1]. 

Determination of the best (in the sense of a quad-
ratic target function) attitude parameters from noisy 
unit-vector coordinates is carried out in terms of 
Wahba’s problem [2]. The QUEST algorithm, repre-
senting the solution to Wahba’s problem in the form 
of an attitude quaternion, is widely known [3]. This 
algorithm does not require significant computing 
resources and is suitable for real-time implementa-
tion. The algorithm for Wahba’s problem solution 
based on singular decomposition shows the best nu-
merical stability [4]. The structure of this algorithm 
makes it possible to derive some general analytical 
relations concerning Wahba’s problem. Several algo-
rithms for real-time solution of Wahba’s problem 
have been developed to date based on these two ap-
proaches. They are adapted to be used both for 
stand-alone star trackers and those integrated into 
astronavigation systems [5].  

The error in measuring attitude by a star tracker 
(star tracker error) depends on the errors in measuring 
the coordinates of individual star direction vectors and 
the spatial structure of the bundle of vectors. Refer-
ence [3] proposes a simple formula for calculating the 
covariance matrix of a small rotation vector that de-
scribes the star tracker error. This formula was ob-
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tained under the assumption that the true values of the 
measured and catalog coordinates of the direction 
vectors coincide (i.e. for zero rotation). In this work, 
we use the formula for the covariance matrix of star 
tracker errors obtained in [4] for an arbitrary rotation. 
In some works, the covariance matrix of the star 
tracker error is considered diagonal [6,7], although 
this is obviously not the case [8].  

If we correct the influence of external effects that 
systematically distort apparent stellar lines [9,10], the 
errors in measuring star direction vectors inside the 
star tracker are divided into fluctuation and systematic 
errors [11,12]. Fluctuation errors are caused by dis-
crete (quantum) noise in the optical signal coming 
from the star and electronic noise in the path for the 
optical signal-to-digital code conversion. It has been 
shown [5] that zero-mean fluctuation errors in the 
measured vectors do not lead to a bias in the star 
tracker’s attitude measurements in the first-order in-
finitesimal. It shows itself only in the second- and 
higher orders infinitesimals.  

For a star tracker located inside the Earth’s atmos-
phere, the fluctuation error in measuring direction 
vectors has an additional component associated with 
random variations in the apparent direction to the star. 
The changes are caused by atmospheric turbulence, 
which leads to local fluctuations in the refractive in-
dex of the air along the path of starlight. In a digital 
image, these changes are manifested as jitter of the 
star image about some average position. The standard 
deviation of the star direction vector jitter is 1–3 
arcsec, estimated from the solar limb jitter and the 
results of the star observation in the morning atmos-
phere [13,14].  

The main part of the systematic errors in measur-
ing direction vectors of stars is of a geometric nature. 
It is associated with the deviation of the actual values 
of the camera intrinsic parameters (focal length, coor-
dinates of the principal point of the image, geometric 
distortion factors) from the nominal ones. These devi-
ations are calibrated during both the star tracker man-
ufacturing [15,16] and operation [17–19]. A certain 
contribution to the systematic error is made by energy 
distortion [20] (also called microdistortion [21]), 
which is associated with errors in spatial discretiza-
tion of the star optical image in a digital camera. Ref-
erence [12] considers the influence of the “dark” sig-
nal nonuniformity in individual photosensitive cells 
on the systematic error in determining the direction to 
the star. The influence of calibration errors of intrinsic 

parameters on the star tracker’s error is not studied in 
the available literature.  

In this paper, we propose a linearized model of the 
star tracker’s errors, which includes a fluctuation 
component in determining the coordinates of images 
of individual stars and takes into account the errors in 
calibration of the camera intrinsic parameters. The 
fluctuation component combines discrete signal noise 
in individual pixels of a star digital image and the jit-
ter of this image due to atmospheric turbulence. Cali-
bration errors lead to a bias in the star tracker’s atti-
tude measurements even in the first-order infinitesi-
mal. In this case, the bias depends on the shape and 
angular dimensions of the observed constellation. The 
developed star tracker error model does not take into 
account the errors of the models of atmospheric re-
fraction and velocity aberration of light used for com-
putational correction of these effects. The proposed 
model was tested on experimental data obtained in 
ground-based calibration of intrinsic parameters of a 
real digital camera.  

2. MODEL OF THE STAR TRACKER  
PRIMARY MEASUREMENTS 

2.1. Geometric model of a digital camera  
 
The digital camera lens of a star tracker forms an 

optical image of the observed constellation on the sur-
face of a semiconductor matrix photodetector (MPD). 
The MPD surface is a flat rectangular matrix of size 
H×W, where H, W are the height and width of the ma-
trix containing homogenous square-shaped photosen-
sitive cells with side length a (Fig. 1). 

The position of an individual photosensitive cell in 
the MPD plane is specified by a pair of integer raster 
indices (ĥ, ŵ)  2 , where  ĥ = 0…H  1, 

ŵ = 0…W  1. The values of indices (0, 0) correspond 
to the cell located in the MPD upper left corner. Indi-
ces ĥ, ŵ increase in the directions from top to bottom 
and from left to right along the vertical and horizontal 
sides of the MPD. The continuous optical image 
formed by the lens on the MPD plane is subject to 
spatial discretization at the boundaries of individual 
cells. The signals received by individual cells are 
converted into digital codes, readout from the MPD, 
and are arranged in the form of a numerical matrix of 
size H×W called a digital image. A pixel with indices 
(ĥ, ŵ) inside a digital image obtains its value from a 
photosensitive cell with indices (ĥ, ŵ) inside the MPD 
matrix. 
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Fig. 1. Geometric model of a digital camera and coordinate frame. The dash-dotted line indicates the optical axis of the camera. The des-

ignations used in the figure are explained in the text.  

 

The process of spatial discretization of the image 
in the MPD plane is described with the use of real-
valued raster coordinates [h  w]T  2, 0 ≤ h <H, 

0 ≤ w <W  with the origin in the upper left corner of 
the upper left MPD cell (cells with raster indices 
(ĥ, ŵ) = (0, 0)). The values of the coordinates h, w 
increase in the direction of growth of the namesake 
indices ĥ, ŵ. The scale of raster coordinates is chosen 
so that the point on the MPD surface with integer val-
ues of raster coordinates [ĥ  ŵ]T falls into the upper 
left corner of the MPD cell with raster indices (ĥ, ŵ). 
Thus, the formation of the value in pixel (ĥ, ŵ) in-
volves points of a continuous optical image with ras-
ter coordinates [h  w]T from a two-dimensional set, 
which is defined as the Cartesian product of half-
intervals [ĥ, ĥ+1)×[ŵ, ŵ+1). 

The MPD surface is located in the focal plane of 
the lens. The optical axis of the lens is perpendicular 
to the MPD surface, intersecting it at point O with 
raster coordinates [hO  wO]T. Point O, called the prin-
cipal point of the image (not to be confused with the 
principal point of the lens), lies close to the MPD ge-
ometric center. Associated with the digital camera is 
the right orthonormal coordinate frame CF (camera 
frame), with the origin at point O; axis CFz


 lies on the 

optical axis of the lens and is directed to world space; 
axes CFx


, CFy


 are parallel to the vertical and horizon-
tal sides of the MPD and directed to increasing raster 
coordinates h and w, respectively (Fig. 1). 

An ideal lens forms a geometric image of star Z as 
its central projection Zʹ onto the focal plane. The pro-
jection center S is located on the optical axis of the 
lens, spaced from the focal plane by the focal length F 
= OS. The direction to star Z in world space is de-
scribed by unit direction vector s


 with a coordinate 

column in CF [ ]CF xCF yCF zCFs s ss T . The position of 

point Zʹ in the MPD plane is specified by vector 


 

with coordinates [ ]x yξ T relative to axes CFx


and 
CFy


. Coordinates ξ , called the vector coordinates of 
image Zʹ, are related to the coordinates s of the star Z 
direction vector by the following formulas:  

xCF

yCFzCF

sF
ss

 
   

 
ξ , 

2 2 2 1/2

[ ]

( )

x y F

x y F

 


 
s

T

.  (1) 

Vector ξ  and raster [h  w]T coordinates of the rep-
resenting point Zʹ are related by the formulas 

O

O

h h
a

w w

 
   

ξ , O

O

hh

ww a

  
    

   

ξ
.  (2) 

The geometric image formed by a real lens devi-
ates from the central projection. This deviation is 
called geometric distortion and is described by the 
Brown-Conrady model, well known in the photo-
grammetric literature [22, 23]. Within this model, dis-
tortion is divided into radial and tangential distortions. 
Radial distortion appears on the spherical surfaces of 
successive lenses with coinciding axes of symmetry. 
Tangential distortion is caused by errors in the posi-
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tion of individual lenses along the common axis of 
symmetry. The star tracker digital camera is a meas-
urement device for which radial distortion is predom-
inant due to the sphericity of the lens surfaces rather 
than errors in the lens assembly. 

Let [ ]x yη   T  be the vector coordinates of the ge-
ometric image of the star formed by a lens with dis-
tortion. In these coordinates, the radial distortion is 
corrected as follows:  

2 4
1 2(1 ...)k r k r   ξ η  ,  (3) 

where 2r  η η T ; k1, k2,… are radial distortion coef-
ficients. At the principal point of the image, 

0x x y y     , therefore, ξ η , i.e. there is no radi-
al distortion at this point. 

For second-order distortion, the transformation of 
the plane coordinates of the star image into the spatial 
coordinates of its direction vector is described by vec-
tor p = [F  hO  wO  k1  k2]T consisting of five parame-
ters, called intrinsic parameters of the camera. Their 
true values are determined as a result of manufactur-
ing calibration and later refined during the star tracker 
operation.  

1.2. Measuring star image coordinates 
 

The lens of a stationary star tracker forms a star 
image as a diffuse spot. The illumination distribution 
of this spot is described by the point spread function 
(PSF). The coordinates of the spot’s digital image 
center are measured by superposition of a square av-
eraging window of 2NW +1×2NW +1 pixels on it, 
where NW  is the window half-width. The raster 

coordinates of the center of mass (also called the 
brightness center or photocenter of the spot) of all 
pixels within the averaging window are considered to 
be measured coordinates [12, 24]:   
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ˆ ˆ ˆ ˆ

1 ˆ ˆ ˆ( , )
C W C W

C WC W

h N w N

S
w w Nh h N

h h I h w
I

 

  

   ,    

ˆˆ

ˆ ˆˆ ˆ

1 ˆˆ ˆ( , )
C W C W

C W C W

w N h N

S
w w N h h N

w w I h w
I

 

   

   ,   (4) 

ˆˆ

ˆ ˆˆ ˆ

ˆ ˆ( , )
C W C W

C W C W

w N h N

w w N h h N

I I h w
 


   

   , 

where (ĥC, ŵC) are raster indices of the pixel in 
which the window center lies; 

ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , )raw bgI h w I h w I h w     is the brightness of 

pixel ˆ ˆ( , )h w with expected value I(ĥ, ŵ)  after the 

background subtraction; ˆ ˆ( , )rawI h w  is the raw bright-

ness of pixel ˆ ˆ( , )h w  obtained from the MPD; 

Ibg(ĥ, ŵ) is the expected value of the background 
level. Coordinates [ ]S Sh w  T  are distorted. 

The background level Ibg(ĥ, ŵ) is an additive signal 
generated by the radiation of the background against 
which the star is observed and by all kinds of internal 
MPD currents. The values of Ibg(ĥ, ŵ) are calculated 
directly from the frame being processed. Further, 
methodological errors in the Ibg(ĥ, ŵ) calculation are 
not taken into account, that is, after Ibg(ĥ, ŵ) is sub-
tracted, brightness I(ĥ, ŵ) comprises only the fluctua-
tion component of the background, and I(ĥ, ŵ) con-
tains only the expected value of the useful signal. 

Fluctuations δI(ĥ, ŵ) = I(ĥ, ŵ) I(ĥ, ŵ) in indi-
vidual pixels are considered independent and the ex-
pected values of the “measured” raster coordinates of 
the star are described by the following formulas: 
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Here, sign “” indicates that they are valid only for 
the first-order δI(ĥ, ŵ). When higher-order variations 
are taken into account, the estimates of the expected 
values may have biases [25]. Fluctuations in brightness 
cause errors in the calculations of the brightness cen-
ter coordinates: 
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where ˆ
S Sh h h      , ˆS Sw w w      . The covari-

ance matrix of these errors takes the form: 

2 2
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2 2ˆ ˆˆ ˆ( , ) ( , )I h w I h w    . 

The simplest variant of the PSF approximation is the 
axisymmetric Gaussian function of vector coordinates with 
a maximum at point Zʹ [26]: 

2 2

2 2

1
( , ) exp

2 2A A

x y
x y

 
     

, 

where / 2ln(1 )A Ar A     is the parameter of 

the circle of confusion (CoC); rA is the radius of the 
CoC into which fraction 0 < A < 1 of the radiation 
flux from the star falls [27]. Next, we consider a circle 
inscribed in a 2×2 cluster of adjacent photosensitive 
cells, i.e. rA = a,  at the boundary of which (on the cir-
cle 2 2 2

Ax y r  ) the PSF value decreases by a factor 
of e2 relative to its maximum. For this circle, with pa-
rameters rA = a = 2A, A = 0.5a, A  0.865,  the 
simulation in [21,24] shows that calculated by (4),  
the maximum systematic error in determining raster 
coordinates of the star geometric image (point Zʹ in 
Fig. 1) does not exceed 0.05a. For further calcula-
tions, we neglect this error and assume that Zʹ lies ex-
actly in the center of cell (ĥC, ŵC), and its raster coor-
dinates are given as [ĥC +δh  ŵC +δw]T, 
δh = δw = 0.5. In this case, the systematic error (4) is 
zero. 

The expected value of signal I(ĥ, ŵ) in cell 
(ĥ, ŵ) = (ĥC+p̂, ŵC+q̂), p̂, q̂ = NW… NW  within the 
window is proportional to the number of electrons 
accumulated in the charge well of the cell: 

e
ˆ ˆˆ ˆ ˆ ˆ ˆ( , ) ( , )C CI h p w q kN p q      , 
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 

    ,  (6) 

where Ne = Pe TE is the expected value of the total 
number of electrons accumulated in all MPD cells 
illuminated by starlight during exposure time TE; Pe is 
the power of stellar radiation incident on the MPD 
surface expressed through the rate of photoelectron 
production in the MPD semiconductor structure; k is 
the proportionality coefficient converting the number 
of electrons into units of the least significant digit of 
the ADC [28]. The Pe value is calculated for each star 
for the built-in star catalog of the star tracker based on 
the star radiation spectrum, the energy characteristics 

of the digital camera lens, and the spectral distribution 
of the MPD quantum efficiency [29,30]. In (6), the 
cos ζ factor was omitted, where ζ is the angle between 
the direction to the star and the optical axis of the 
camera (Fig. 1). The field of view of navigation star 
trackers does not exceed 30°, i.e. cos ζ ≥ cos 15°≈ 
0.966. Without compromising the accuracy of the 
model under consideration, this factor can be set equal 
to 1. The formula for the coefficients ˆ ˆ ˆ( , )p q of the 
spatially discretized PSF is written using the standard 
Gaussian error function erf(x) [24]:   
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where 2 22 0.5A a    , δh = δw = 0.5; 
2

0

2
erf ( )

x tx e dt
  . The derivation of this expres-

sion is given in Appendix.  

The brightness dispersion 
2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )I C C I Q bgh p w q p q p q k          com-

prises dispersion 2 ˆ ˆ( , )Q p q of the quantum noise of the 

signal from the star and dispersion 2
bg of the back-

ground fluctuation component. Quantum noise has the 
Poisson distribution, and its dispersion takes the form 
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e
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rd    

is the dispersion of the readout noise; 2
dc dc Ei T   is 

dark charge dispersion, idc is the MPD dark current; 
2
ob is Poisson dispersion of optical background radia-

tion; 2 2 /12ADC QS   is quantization noise dispersion, 

QS is a quantization step. The values of rd, idc  and 
QS are given in the MPD specification, and ob  is 
calculated based on observation conditions. An ex-
ample of such a calculation is given below.  

Now we can rewrite the coefficients of the covari-
ance matrix (5):  
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N

p h

N

  

  

  
  



  




 

 
, 
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2
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
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ˆ ˆ ˆ ˆ( , )
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N N

q N p N

p q
 

    . 

The typical window size for the CoC with rA = a is 
3×3 pixels, i.e. NW = 1 [12]. For this case, the covari-
ance matrix of the random error in determining the 
raster coordinates of the brightness center takes the 
form: 

2

2
e e

cov{[ ] }

0.5682 0.2513 8.3391 2.27431

0.2513 0.5682 2.2743 8.3391( )

S S

bg

E E

h w

PT PT

  

   
    

   

  T

. 

Formula (3) for distortion correction can be rewrit-
ten with H = ηηT: 

2 2
1 2 2 1 2(1 ( ) ) ( )k k k k     ξ η η η η η I Η Η ηT T , 

where [ ]S O S Oa h h w w  η   T are the vector coor-
dinates of the star image brightness center before dis-
tortion correction, calculated according to (2). This 
expression is varied to derive an error in the vector 
coordinates of the brightness center after distortion 
correction: 

2
1 2 1 2

2
2 1 2

( ) ( [ ])

( ) ,

dst k k k k

k k

           

   

ξ Η Η η Η ΗΗ Η Η η

I Η Η η
 

where [ ]ns S Sa h w     η η   T is the vector coordi-
nates error η, which comprises the fluctuation 

[ ]ns S Sa h w   η   T and systematic [ ]O Oa h w  T com-
ponents arising due to the errors in the calibration of 
the intrinsic parameters. After rearrangement of the 
variations, the new expression for dstξ  takes the 
form: 

1
2 1 2 1 2

2

( ) ( ) ,O
dst ns

O

h k
a

w k

    
            
ξ I С η I С С    (7) 

where 2 2
1 1 2( ) ( )k k   С H M H M , 

2
2r M I H , 2 4

2 [ ]r rС η   . The covariance matrix 
of the fluctuation component of error dstξ  has the 
form: 

2
2 1 2 1( )cov{[ ] }( )ns S Sa h w    P I С I С  T T . 

 
2.3. Measuring the direction vector coordinates 

 
The true directions to the stars observed by the star 

tracker are concentrated around the optical axis of the 
digital camera along which axis CFz


 is directed; 

therefore, the method for determining the angular co-
ordinates of the direction to the star in CF must be 
chosen so that in the sequence of two rotations that 
bring CFz


 to the star direction, there is no rotation 

about axis CFz


 itself. This choice of sequence of rota-
tions guarantees the absence of singularity in the an-
gular coordinates of the observed star. In what fol-
lows, we use the following system of two rotations: 
the first rotation is about axis CFy


 by an angle y  un-

til axis CFz


 is aligned with the projection of the star 
direction vector onto the plane CF CFx O z

 
. The second 

rotation is performed by angle x  about the axis to 

which axis CFx


 was brought after the first rotation, 
until axis z  (axis CFz


 was brought into it) is aligned 

with the direction vector of the star. In this sequence 
of rotations, the coordinates of the star direction vec-
tor CFs  are written as follows: 

[ ] [ ]
y x x y xCF xCF yCF zCFs s s s c s c c      s T T , 

where c  cos , s = sin . 

Fluctuations δ = [δy  δx]T of the angular coor-
dinates of the direction vector shift its end along two 
mutually perpendicular directions lying in the plane 
perpendicular to the true direction to the star. It is fur-
ther assumed that these fluctuations are independent 
and have identical normal distributions with zero 
mean. The numerical values of the standard deviation 
sh of model fluctuations δy ,δx are calculated from 
the experimental value of the standard deviation of 
the solar limb angular jitter equal to 3arcsec [13,14]: 

2 2 1/2 2( ) 2 3 arcsecx y sh        , whence sh = 2.1 

arcsec. Turbulent fluctuations CFt  of the direction 

vector coordinates sCF, CF CF t s  can be written as  

2 1/2

2 1/2

2 1/2

0

/ (1 )

0 (1 )

/ (1 )

y x y x

x

y x y x
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zCF xCF yCF yCF

yCF

xCF zCF yCF yCF

c c s s

c

s c c s

s s s s

s

s s s s

   



   

 
 

     
 
   
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     
   

t φ

φ

. 
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The vector coordinates ξ of the star image without 
distortion are related to its direction vector by (1), 
from which turbulent fluctuations of the vector coor-
dinates are obtained: 

2

2 1/2

1 0 /

0 1 /

(1 ) / 0

/ (1 )

xCF zCF

trb CF
yCF zCFzCF

yCF zCF

xCF yCF zCF yCFzCF

s sF
s ss

s sF

s s s ss 

 
     

  
     

ξ t

φ

. 

After (1) is substituted to this formula, we derive the 
final expression for turbulent fluctuations of the star im-
age vector coordinates: 

trb  ξ T φ , 
2 2

2 2 2 2 2 1/2

( ) / 0

/ ( ) / ( )

x F F

xy F x y F x F

  
      

T , (8) 

where T is the distribution matrix of turbulent fluc-
tuations of the direction vector angular coordinates in 
the vector coordinates of the star brightness center. 
The covariance matrix of turbulent fluctuations has 
the form: 

2
trb trb trb sh     P ξ ξ TTT T . 

Variation (1) over all variables leads to the error in 
determining the star direction vector coordinates from 
its digital image:  

3
2 2 2 1/2

( )

(( ) ( ) )
CF CF

CF n n Fx y F

 
      

ξI s s
s

T

, n n
CF CF s s , 

where trb dst    ξ ξ ξ  is the fluctuation error in 
determining vector coordinates ξ  of the star bright-
ness center after correction for distortion. We substi-
tute (7) and (8) into the formula: 

1 2 3nsF

 
       

ξ
G η G φ G p , 

where 2 1
1

0 0

 
   

 

I С
G , 2 0 0

 
  
 

T
G , 

2 1 2

3

0
( )

0

1 0 0 0 0

a
 

    
  

I С С
G ; 

1 2[ ]O OF h w k k        p p p
 T  are the errors in 

calibration of the intrinsic parameters; p
  is the true 

vector, p  is the calibrated vector used in the star 
tracker algorithms. The final expression for the fluc-
tuation error of the direction vector of the detected 
star takes the following form: 

3
1 2 32 2 2 1/2

( )
( )

( )
CF CF

CF x y F


     

 
I s s

s G ε G φ G p
T

. (9) 

3. STAR TRACKER ATTITUDE  
MEASUREMENT MODEL 

Assume that the image obtained by the star track-
er’s digital camera contains NS individual stars, and 
coordinates 1{ } SNn

CF ns of their unit direction vectors are 
calculated. All these stars are identified, i.e. each star 
numbered n = 1... NS has a corresponding star cata-
log’s entry that is assigned the same number n. These 
records were used to calculate coordinates 1{ } SNn

GCRS ng  
of the unit direction vectors of the same stars, but rela-
tive to the inertial geocentric celestial coordinate sys-
tem (GCRS). Wahba’s problem for the two sets of 
coordinates, 1{ } SNn

GCRS ng  and 1{ } SNn
CF ns , of the same bun-

dle of vectors is called the problem of finding orthog-
onal matrix GCRS

CFS , for which the target function 

2

1

( ) 0,5 | |
SN

GCRS n GCRS n
CF n CF CF GCRS

n

L


  S s S g , 
1

1
SN

n
n

   

reaches its minimum value. Here, νn > 0 are the 
weights of individual measurements which are further 
assumed to be equal, νn = 1/NS.  

To solve this problem, we introduce an intermedi-
ate 3×3 matrix B, which is subjected to singular de-
composition [4]: 

1

1
( )

SN
n n
CF GCRS

nSN  


  B s g UΛV U Λ VT T T , 

where U, V are orthogonal matrices of size 3×3; 
Λ = diag(λ1, λ2, λ3) is a 3×3 diagonal matrix with non-
negative singular numbers λ1≥λ2≥λ3≥0; 
U+ = U diag(1, 1, det(U)), Λʹ = diag(λ1, λ2, dλ3), 
V+ = V diag(1, 1, det(V)); d = det(U) det(V) = 1 on 
its main diagonal. The solution to Wahba’s problem is 
matrix   

3diag(1,1, ) ( [ ])GCRS GCRS
CF CFd     S U V U V I θ S


T T , 

where GCRS
CFS


is a true attitude matrix of the star 

tracker;  = [x y z]T  is the vector of the star tracker 
small errors; [ ]θ  is a skew-symmetric vector multi-

plication matrix ×b = [×]b: 

0

[ ] 0

0

z y

z x

y x

  
     
   

θ . 

To strictly calculate the value of , we need to 
know the true values of the catalog 1{ } SNn

GCRS ng


and ob-

served 1{ } SNn
CF ns


coordinates. Since these values are un-

known, the estimate of vector  is calculated further 

STAR TRACKER ERROR MODEL 45

GYROSCOPY AND NAVIGATION Vol. 15 №1 2024



by substituting the calculated 1{ } SNn
GCRS ng and measured 

1{ } SNn
CF ns coordinates into formula [4(33)]: 

1

[ ]( )
SN

n GCRS n n
CF CF GCRS CF

n

    θ K s S g s , 

where n n n
GCRS GCRS GCRS  g g g


 is the error in calcu-

lating the catalog coordinates; n n n
CF CF CF  s s s


 is the 

observation error;  2 3 1 3 1 2=diag , ,d d        D ; 
1( ) / SN

 K U D UT  is the matrix coefficient of size 
3x3. 

In modern stellar catalogs, star coordinates are giv-
en in the inertial barycentric celestial reference system 
(BCRS) with the origin at the center of mass of the 
Solar system [31]. Error n

GCRSg  includes errors in ta-
ble values of star coordinates in BCRS and errors in 
converting the direction vector from BCRS to GCRS. 
The error of the table values does not exceed 
0.01arcsec. The error in converting the vector be-
tween reference systems comprises errors in taking 
into account the relativistic aberration from the star 
tracker’s motion and the annual parallax of stars. The 
aberration can be decomposed into two components–
–from the orbital motion of the Earth and from the 
daily rotation of the Earth. The first component is 
quite significant; it can reach 20 arcsec and is neces-
sarily taken into account during transformation of co-
ordinates. The second component of aberration and 
annual parallax jointly give an error in coordinate 
transformation of no more than 1 arcsec, so that it can 
be neglected [9]. As a result, the final formula for the 
star tracker error takes the form: 

1

[ ]
SN

n n
CF CF

n

   θ K s s .  (10) 

The total error of the star tracker is derived by sub-
stituting (9) into (10) and is decomposed into fluctua-
tion component  and systematic bias b of the star 
tracker:  

 =  + b,  (11) 

where 1 2
2 2 2 1/2
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  s G
b K p ;  

1
nG , 2

nG , 3
nG  are matrices from (9) calculated for a star 

with number n = 1… NS. The covariance matrices of the 
star tracker error components are given as 

3 3
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1

2
1 1 2 2

2 2 2
1

[ ] [ ]
,

( ) ( ) )

[ ]( )[ ]
,

( ) ( )

S

S

n n n nN
CF CF

n n
n

n n n n n n nN
CF ns CF

n n
n

x y F

x y F









  
        

    
        





p
b

ε

s G P G s
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s G P G G G s
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T

  (12) 
where pP is the covariance matrix of the errors in 

the values of intrinsic parameters calculated as a result 
of calibration. Matrices Pb and P depend on the con-
figuration of the stars in the observed constellation.  

The interpretation of formulas (12) depends on 
how the star tracker is used in the navigation system. 
If it is used as an independent sensor, then (12) de-
scribes the error of a separate attitude measurement 
with the covariance matrix P = Pb + P. If the star 
tracker measurements are used in a tightly coupled 
astronavigation system, which, in addition to the atti-
tude parameters, estimates the error model’s parame-
ters of the star tracker, then (12) can be rewritten in 
the form of an observation equation:  

 = Hδp δp +  , 

where 3
2 2 2 1/2

1

[ ]

(( ) ( ) )

S n nN
CF

n n
n x y F



 

 p

s G
H K  is a ma-

trix block of size 3×5 through which the error vector 
δp is observed;  is the observation noise with the co-
variance matrix P. Vector δp is part of the error vec-
tor of the prior estimate of the coupling filter state 
vector. 

4. EXPERIMENTAL VERIFICATION  
OF THE ERROR MODEL 

The error model of the star tracker was tested on 
experimental data obtained during ground-based cali-
bration of the camera [32]. The calibration process 
consisted of six independent observation sessions, 
each lasting approximately 1 hour. The camera was 
rigidly attached to a ground base; the directions of its 
optical axis did not coincide with each other in differ-
ent sessions. In one of the sessions, the optical axis of 
the camera was directed to the zenith (zenith session). 
In that case, the errors in correction for atmospheric 
refraction were close to zero.  

Observation conditions in all sessions made it pos-
sible to consistently detect and identify 50–60 indi-
vidual stars of magnitude 4–7 in each frame. An im-
age composed of the brightness centers of all stars 
from all frames of the zenith session is shown in 
Fig. 2.  
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Fig. 2. Images of the brightness centers of all stars detected and 

identified in the zenith session (grey spots). Red spots are the bright-
ness centers of the stars identified in the first frame; green circles are 
the 10 brightest stars of the first frame. 

 

The experiment was carried out in the suburbs; in 
our calculations, the brightness of the optical back-
ground of the clear night sky was taken to be 
mbg = 21m/arcsec2, which corresponds to the 4th level 
of light pollution of the sky on the scale [33]. With 
this method of specifying the brightness of the night 
sky, the standard deviation of the optical background 
can be written as follows: 

2,5
e 10

ob Vm m
V

ob E pixT P



     , 

2
180

3600pix

a

F

      
, 

where pix  is the solid angle of the pixel [arcsec2]; 

e,V Vm P is the magnitude and the power of the refer-
ence star. The energy characteristics of the experi-
mental camera and observation conditions are given 
in Table 1. In this table, the energy units  
(J and W = J/s) are converted to the number of elec-
trons (e− and e−/s) in the charge well of the photode-
tector cell [28].  

Individual values of vectors of calibrated intrinsic 
parameters were calculated for each session. The re-
siduals of the calibration measurements served as in-
dicators of the calibration quality:  

[ ]n n n n n
res res res ctlx y     ξ ξ ξT , 

where nξ are the vector coordinates of the star n 

image brightness center; n
ctlξ are the vector coordinates 

of the same star projection onto the MPD plane calcu-
lated from the stellar catalog. The standard deviation 
of the residuals calculated for all stars of all frames 

separately for each calibration session was 0.2 pixel 
or 1.4 arcsec. The closeness of the standard deviations 
of the residuals in different sessions is the reason why 
we should consider all six values of the calibrated 
vector equally: any of these vectors can turn out to be 
true during the star tracker operation.  

Table 1.  
Energy characteristics in the experiment 

 
Parameter Designation Value 
Focal length F 106.0 mm 

Linear dimension of 
pixel 

a 3.45	μm 

Angular dimension of 
pixel  

a/F 
    6.7 arcsec 

Solid dimension of 
pixel  

Ωpix 
  45.1 arcsec2

Exposure time  TE     0.2 s 
Standard deviation of 

readout noise rd 
    2.7 e 

Dark current idc   46.1 e/s 
Quantization interval QS   40.4 e 
Standard deviation of 

star jitter sh 
    2.1 arcsec 

Brightness of the opti-
cal background 

mbg 
  21.0m/arcsec2

Standard deviation of 
the optical background  ob 

    0.1 e 

Brightness of the refer-
ence star  

mV     0.03m

Power output of the 
reference star  e

VP      1.52×106 e/s 

 

Along with “useful” intrinsic parameters, the fol-
lowing “interfering” parameters were determined dur-
ing the calibration process: three angles of camera 
attitude at the instants of each frame shooting. In this 
calculation, these angles are considered as the camera 
“true” attitude angles, and they were used to calculate 
the “true” matrix GCRS

CFS


. The vector calibrated in the 
zenith session is taken as “true” vector p

  of intrinsic 
parameters. To simulate the calibration error, we used 
a “biased” vector p obtained by averaging the calibra-
tion results over all six sessions. The calibration error 
vector represented in relative units has the form:  

0.0021%   .0.1224%  0.0319%

(

.

/ )

  1 2823%  39.01 2

10

[ 6 %

0%

]

  

   

p p


T
 

To analyze the fluctuation errors of the star tracker, 
all vectors n

resξ obtained in all frames of the zenith 
session were arranged in increasing order of catalog 
star magnitudes mn. The graph in Fig. 3a shows the 
result, where the residuals corresponding to the 
brightest stars (low magnitudes) are located on the 
left, and the faintest stars (high magnitudes), on the 
right. Superimposed on the graphs in Fig. 3a are the 
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values of the root-mean-square fluctuation errors in 

determining vector coordinates (1,1)n n
ns ns  P  caused 

by the image electronic noise and

(1,1) (1,1)n n n
trb ns trb  P P , which take into account the 

stars jitter. From the figure it is clear that for a star 
tracker motionless inside the atmosphere, the main 
source of fluctuation errors is star jitters rather than 
electronic noise in the values of individual pixels.  

The star tracker error vectors [ ]x y z   θ
   

T for 

the true p
 and  = [x  y  z]T for the biased p vectors 

are restored from the expressions: 

3[ ] ( )( )GCRS GCRS
CF CF  θ I S p S

  T , 

3[ ] ( )( )GCRS GCRS
CF CF  θ I S p S


T , 

where ( )GCRS
CFS p

 , ( )GCRS
CFS p  are the star tracker atti-

tude matrices obtained from Wahba’s problem solu-
tion for the same stars in the same frame, but with 
different intrinsic parameters. Vector θ


contains only 

the fluctuation component of the error, and vector  
has additional bias b.  

The graphs of vector θ


components are shown in 
Fig. 3b. Bold blue lines indicate graphs of errors in 
the attitude calculation based on all stars recognized 
in the frame (NS ≥ 50); light blue lines indicate the 
errors in using the first 3...10 brightest stars for the 
attitude calculation. Superimposed on the error 
graphs are the graphs of the standard deviations 

(1,1)
x

  θP , (2,2)
y

  θP , (3,3)
z

  θP  calcu-

lated for NS  = 3 (red graph with circles) and for 
NS = 10 (yellow graph with squares) of the brightest 
stars in the frame. For this number of stars, the fluc-
tuation errors in the star tracker angles of inclina-

tion (components x


and y


)  turned out to be no-

ticeably smaller than the error of the star tracker 
angle of rotation ( z


), which is a characteristic fea-

ture of its operation [34]. A higher attitude error in 
the left part of Fig. 3b for NS  = 3 is due to the bad 
configuration of the three brightest stars in the cam-
era field of view rather than with the convergence 
of some internal estimation filter.  

The graphs of the modules of the attitude errors 
| |θ


 and || are shown in Fig. 4a. Bold lines indicate 
the error graphs when all stars identified in the frame 
were used to calculate the star tracker attitude; light 
lines show the errors in the cases when the first 3...10 
brightest stars were used. Error || is entirely due to 
the residuals after calibration; it is the minimum error 
for the star tracker under consideration in real operat-
ing conditions. 

The graphs of the components of vectors  and 
b = [bx  by  bz]T are shown in Fig. 4b. The components 
of vector  contain noise components concentrated 
around the components of the bias vector b. From 
these graphs it is clear that in this case, the calibration 
errors of the intrinsic parameters have little effect on 
the error in determining the star tracker rotation 
(component bz), but they noticeably distort the meas-
ured angles of its inclination (components bx, by).  

(а) 
 

(b) 
 

Fig. 3. Fluctuation errors of the star tracker. (a) residuals after calibration of intrinsic parameters; (b) star tracker error vector components 
for different numbers of processed stars. 
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(а) 

 
(b) 

 
Fig. 4. The star tracker errors in the zenith session: (a) star tracker error vector magnitudes for the true and biased vectors of intrinsic pa-

rameters; (b) coordinates of the error vector and the bias vector of the star tracker. 

 

5. CONCLUSIONS 

The paper proposes a linearized model of star 
tracker errors which takes into account electronic 
noise in the digital image of stars and calibration er-
rors of camera intrinsic parameters. For atmospheric 
star trackers, the model is complemented with errors 
in measuring apparent directions to the stars caused 
by atmospheric turbulence. The model does not take 
into account the errors associated with blurs in star 
images, i.e. this model can be applied in the condi-
tions when a star tracker rotates slowly so that the an-
gle of the field-of-view rotation does not exceed half 
the angular size of the pixel during the exposure time. 

The experimental verification of the proposed 
model shows that even for a fault-free atmospheric 
star tracker, the values of the intrinsic parameters can 
significantly deviate from their values obtained during 
factory calibration. These deviations are small in rela-
tive magnitudes, but they lead to noticeable systemat-
ic errors in stellar attitude measurements. These errors 
can be eliminated by regular calibrations of intrinsic 
parameters during operation. If intrinsic parameters 
are included in the state vector of a certain estimating 
filter for operational calibration, the developed meas-
urement model can be used directly to synthesize ob-
servation equations for this filter.  

The values of the attitude errors measured by the 
star tracker may seem too small to be taken into ac-
count for the solution of practical navigation prob-
lems. In order to correctly interpret these values, we 

should keep in mind that the main purpose of the star 
tracker is not to measure attitude relative to the stars, 
but to obtain data to calculate the observer’s position 
relative to the Earth. In this case, the star tracker’s an-
gular error || turns into the error of a single position 
measurement ||×R, where R  6370 km is the ra-
dius of the Earth, which is 155 m at || = 5arcsec and 
618 m at || = 20 arcsec, i.e., from a positioning point 
of view, the star tracker is a very coarse navigation 
device compared to receivers of satellite navigation 
systems.  

APPENDIX 

 

PSF INTEGRATION OVER  

THE PHOTODETECTOR CELL AREA 

To simplify the notation, we write the Gaussian 
PSF in the form 

2 21
( , ) exp

x y
x y

 
     

, 

where 22 A   , ˆ( ( ))Cx a h h h    , 

ˆ( ( ))Cy a w w w    ; ˆ ˆ( , )C Ch w  are raster indices of the 
cell with the maximum PSF; h , w  are the PSF 
maximum offsets relative to the upper left corner of 
the cell ˆ ˆ( , )C Ch w . The signal level in a cell with raster 

indices ˆ ˆ ˆ ˆ( , )C Ch p w q  is proportional to the integral 
of ( , )x y  taken over the area of this cell: 
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2 2

ˆ ˆ( ' 1 ) ( 1 )

ˆ ˆ( ) ( )

ˆ ˆ( ' 1 ) ( 1 )

ˆ ˆ( ) ( )

ˆ ˆ ˆ( , ) ( , )

1

a p h a q w

a p h a q w

a p h a q wx y

a p h a q w

p q dx dy x y

dx dy
e e

   

 

   
 
 

 

   

 
  
    

 

 
. 

After replacing the integration variables 0,5x x   
, 0,5y y    , this expression is rewritten as  

2 2

ˆ ˆ( ' 1 ) ( 1 )

ˆ ˆ( ) ( )

1 2 2ˆ ˆ ˆ( , )
4

a p h a q w

x y

a p h a q w

p q e dx e dy

   
 

  

 
 

 
       
 

  . 

The integrals in this product are expressed in terms 
of the standard error function erf ( )x : 

22
erf ( ) erf ( )

a
x

b

e dx a b  
  , 

2

0

2
erf ( )

x
tx e dt

  . 

Hence, 

ˆ ˆ1 ( 1 ) ( )ˆ ˆ ˆ( , ) erf erf
4

ˆ ˆ( 1 ) ( )
erf erf .

a p h a p h
p q

a q w a q w

        
            
        

          
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