Information Reliability, Monitoring and Diagnostics of Navigation Systems

S.P.Dmitriev, N.V.Kolesov. A.V.Osipov

St. Petersburg: SRC of Russia - CSRI "Elektropribor". 2003. - p.207

Price - 60 RUR

© SRC of Russia - CSRI "Elektropribor". 2003. © S.P.Dmitriev, N.V.Kolesov. A.V.Osipov, 2003. ISBN 5-900780-46-5

Concepts of information failure and information reliability of navigation systems (NS) are introduced.

Procedures are considered to calculate NS information reliability, which are based on its error approximation by random diffusion and Markov jump processes. Techniques of the theory of runs and the Fokker-Planck-Kolmogorov equations solution are employed in the procedures.

Effective algorithms are proposed and analyzed for monitoring and diagnostics of information failures and NS malfunctions. The algorithms are based on methods for nonlinear multiple-choice filtration and are supposed to use Kalman filter bank. Examples are given for implementing monitoring and diagnostics for inertial and satellite NS.

The book is intended for wide range of specialists engaged in the field of NS designing. The book contains necessary reference information in mathematical statistics for better understanding the cited material.

Bibliograph.: 99, Fig.44, Tab. 2

CONTENTS

7

Foreword	5
Introduction	5
Chapter 1. Foundations of General Reliability Theory for Technica Systems	^{al} 14
1.1. Technical System Hardware Reliability. Probabilistic Assessment	14
1.2. Simple Flow of Events and Markov Models for Technical System Operation	19
1.3. Reliability of Redundant Technical Systems	26
1.4. Monitoring and Diagnostics of Technical Systems	35
Chapter 2. Error Model and Information Reliability Assessment of Navigation Systems	of 42
2.1. Characteristics of Scalar Random Processes	44

2.2. Vector Markov Processes	52
2.3. Stochastic Error Models of Navigation System	56
2.4. Runs of Random Markov Processes. Fokker-Planck-Kolmogorov Equations	68
2.5. NS Information Reliability Assessment under Diffusion Error Models	74
2.6. NS Information Reliability Assessment under Jump Error Models	81
Chapter 3. Information Failures and Malfunctions in Navigation Systems	
Monitoring and Diagnostics Methods	89
3.1. Monitoring and Diagnostics of Information Failures and Malfunctions as a Decision Problem	89
3.2. Review of Known Approaches to Solving Monitoring and Diagnostics Problems for Information Failures and Malfunctions	^s 96
3.3. Estimation of Determined Dynamic System State	100
3.4. Optimal Estimation of Stochastic Dynamic System State	107
3.5. Monitoring and Diagnostics of Information Failures and Malfunctions in NS by Optimal Methods for Multiple-Choice Filtration	
3.6. Monitoring and Diagnostics of Information Failures and Malfunctions in NS by Suboptimal Methods for Multiple-Choice Filtration	^y 129
Chapter 4. Information Failures and Malfunctions of Navigation Systems	137
Examples of Monitoring and Diagnostics	137
4.1. Monitoring of Satellite Navigation System Integrity	137
4.2. Monitoring and Diagnostics of Information Failures in Redundant Autonomous System of Marine Navigation	^s 146
4.3. Monitoring and Diagnostics of Information Failures in Low Redundan Autonomous System of Marine Navigation	t 157
Appendix 1. General Concepts of Probability Theory	175
Appendix 2. Riccati Equation Solution	181
Appendix 3. Probability of 1st Order Markov Process Non-Exceedance of a Specified Level at Interval	^d 185
Appendix 4. Kalman Filter Ratio Derivation	193
References	200
On behalf of the Organizing Committee of the 4 th Conference of Young 5 Scientists <i>Navigation and Motion Control</i>	

Session "Smart control systems"

S.N.Vasiliev

Logical approach to dynamic systems control (L e c t u r e)	7

E.A.Cherkashin

Using artificial intelligence for information-control systems	
T.I.Madzhara	
A computer-aided system for solving optimal control problems	31

Session "Gyroscopic systems"

A.A.Stolbov

On increasing the calibration accuracy of the inertial navigation system 38 based on attitude gyros

A.M.Boronakhin

The use of analytical gyro vertical for navigation on the railway track 45

V.V.Pchelin, A.V.Uskov A stabilized gyro compass based on a strapdown short-period vertical 53

N.V.Goncharov, Yu.V.Filatov

Development of goniometric methods and means for monitoring the 58 vehicle attitude

Session "Data processing"

L.A.Mironovsky

The theory of invariants and its application in diagnosis (L	ecture) 64.
Yu.A.Litvinenko	
Kalman filter sensitivity to uncertainty of water current w	hen solving the
problem of inertial navigation system	83
damping by the log	

A.P.Aleshkin, T.O.Myslivtsev

Adaptive empirical estimation of the state vector for a spacecraft under 89 measurement shortage

M.S.Koryukin

The use of neuronet algorithms for processing data from redundant 97 sensors

G.V.Bezmen

The possibility analysis for using neural networks in solving filtering 103 problems

K.Yu.Petrova

Optimization of defect distinguishability in test diagnosis	107
---	-----

I.S.Kayutin

Study of digital data processing algorithms for an acceleration sensor 115

D.P.Loukianov, A.Ya.Maizelis

Investigation of speed variations for high-speed gas flows in variable121 cross-section nozzles

V.A.Smirnov

Algebraic synthesis of controllers of gyroscopic stabilization and control 129 systems

A.V.Bobkov

A system of positioning by the terrain image on the basis of line set 137 analysis

Session "Sensors of navigation and control systems"

M.I.Evstifeev, M.F.Smirnov, A.A.Untilov

The	analysis	of	mechanical,	electrical	and	thermal	characteristics	in 142
desi	gning a m	nicro	omechanical g	gyro				142

D.P.Loukianov, I.Yu.Ladychuk

Study of microaccelerometers using surface acoustic waves	149
---	-----

Yu.V.Shadrin, S.G.Kucherkov

Dynamic characteristics of a ring micromechanical gyro with the open 155

Yu.V.Povodyrev, S.M.Dyugurov

Development of methods and means to increase the accuracy of the angular data pickup system of a strapdown electrostatic gyro

V.N.Khodurov

Experimental investigation into the thermal drift of fiber-optic gyros 165

D.I.Lychev, S.G.Kucherkov

A precision rotary test bench for testing a micromechanical gyro 171

Session "Control theory and systems"

V.O.Nikiforov

Control of vehicles with roughly known characteristics: roughness, adaptation and robustness (Lecture)

V.O.Rybinsky

Robust stabilization of linear periodic systems	188
---	-----

K.Yu.Polyakov

Ultimate possibilities of smoothing random processes using 196 continuous-digital filters

O.E.Yakupov

An adaptive electro-hydraulic servo drive of the aircraft 203

T.V.Turenko

A hybrid model of the direct digital control system with a unitary-code	211
sensor	211
A.G.Klimenkov, A.L.Starichenkov, T.S.Chernysheva	
The software of the simulator for hydrofoil ship motion control	218
Session "Electronic and electromechanical devices of navigation	

and control systems"

V.D.Aksenenko, S.I.Matveev

Synchronous demodulation using the digital signal processing technique 225

Ya.V.Belyaev, Ya.A.Nekrasov

The methods for estimating the accuracy of a temperature stabilization system using the software for thermal fields calculation

A.M.Richnyak

A superconductive geomagnetic motor for spacecraft orientation and stabilization systems

Session "Computer technologies in navigation and control"

A.A.Belash, S.S.Gurevich

The central computer of the strapdown inertial attitude system and its software 241

D.A.Tomchin

The virtual laboratory for study and control of a single-rotor vibration 246

S.N.Turusov, O.Yu.Lukomskaya

The system of informational support for organizational readiness of the 253 ship's crew

Session "Ship navigation"

A.V.Ulanov

The analysis of alternative approaches to managing the controlled motion	261
of an underwater gliding vehicle	

I.F.Shishkin, A.G.Sergushev	
Using the science about tracks in water areas	268
A.G.Shpektorov, V.A.Zuev	

N.V.Kuzmina Contrasting color of auxiliary information in the marine direction-finder	280
Session "Integrated navigation and orientation systems"	
 A.M.Boronakhin, A.V.Kazantsev. S.A.Karpasov The results of experimental investigations of the navigation system on the railway as a part of the track measurement car CSRI-4 S.V.Ignatiev A stabilized gyrocompass based on fiber-optic gyros with rotating sensor unit 	
A.A.Pisarevsky, A.N.Doronin	
-	299
Yu.V.Gavrilenko, N.A.Zaitseva, E.V.Kochneva Suboptimal double-step filter for special navigation problems	303
Round table "The results and forms of holding a conference using the Internet"	
Yu.A.Litvinenko, O.A.Stepanov, D.O.Taranovsky The experience in holding the conference of young scientists <i>Navigation</i> <i>and Motion Control</i> using the Internet List of authors	309 315
Foreword	
Gravimetry	
L.K. Zheleznyak, V.N. Koneshov	
Up-to-date methods for studying gravity field of the World	
ocean	
L.K. Zheleznyak	

The Russian marine gravimetric system

A.V. Sokolov, S.V. Usov, L.S. Elinson	21
Gravity survey in conditions of marine seismic work	
B.A. Blazhnov, L.P. Nesenjuk, V.G. Peshekhonov, A.V. Sokolov,	
L.S. Elinson, L.K. Zheleznyak	33
An integrated mobile gravimetric system. Development and test	
results	
V.N. Ilyin, Yu.L. Smoller, S.Sh. Yurist	
A mobile ground-based gravity meter. Development and test	45
results	
V.N. Berzhitzky , V.N. Ilyin , E.B.Saveliev, Y.L. Smoller, Yu.V.	
Bolotin, A.A.Golovan, N.A.Parusnikov, G.V. Popov,	
Bolotin, A.A.Golovan, N.A.Parusnikov, G.V. Popov, M.V. Chichinadze	48
· · · · · · · · · · · · · · · · · · ·	48
M.V. Chichinadze	48
M.V. Chichinadze GT-1A inertial gravimeter system design experience and results	48
M.V. Chichinadze GT-1A inertial gravimeter system design experience and results of flight tests	48
M.V. Chichinadze GT-1A inertial gravimeter system design experience and results of flight tests O.A. Stepanov, B.A. Blazhnov, D.A. Koshaev	
M.V. Chichinadze GT-1A inertial gravimeter system design experience and results of flight tests O.A. Stepanov, B.A. Blazhnov, D.A. Koshaev The efficiency of using velocity and coordinate satellite	
 M.V. Chichinadze GT-1A inertial gravimeter system design experience and results of flight tests O.A. Stepanov, B.A. Blazhnov, D.A. Koshaev The efficiency of using velocity and coordinate satellite measurements in determining gravity aboard an aircraft 	

Gravity gradiometry

G.B. Volfson	00
State and prospects of gravity gradiometry development	90
A.B. Manukin	
Design of a measuring system for a highly sensitive gravity	105
gradiometer using vertical pendulums	
M.S. Petrovskaya, G.B. Volfson	
Construction of geopotential models by the satellite	111
gradiometry data	
V.G. Peshekhonov, G.B. Volfson	
Problem solution for design of a gravity variometer operating	118
on a moving base	
G.B. Volfson, M.I. Evstifeev, V.G. Rozentsvein, M.P. Semenova,	
Yu.I. Nikolsky, E.V. Rokotyan, S.F. Bezrukov	122
A new generation of gravity variometers for geophysical	
investigations	

Borehole navigation

A.A. Molchanov, G.S. Abramov

136

Navigation in investigation of underground space in searching,

exploring and developing mineral deposits		
V.G. Rozentsvein	146	
State of the art of borehole gyroscopic navigation systems		
E.V. Freiman, S.V. Krivosheyev, V.V. Losev		
Peculiarities of attitude algorithm construction for gyroscopic	168	
inclinometers based on a single-axis gyrostabilizer		
N.P. Rogatykh	178	
Methodical aspects of inclinometer design		
V.M. Suminov, D.V. Galkin, A.A. Maslov	100	
A mathematical error model of a gyro inclinometer	190	