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Abstract: The paper discusses how the data delays of inertial sensors within a strapdown inertial navigation system affect the 
accumulation of inertial navigation errors. The vehicle motions when this effect is particularly significant are identified in opera-
tion and ground-based experiments. Recommendations on delay estimation and further algorithmic compensation are provided. 
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INTRODUCTION 

The accuracy of SINS depends on inertial sensor 
instrumental errors and on numerical algorithms of 
integrating the SINS differential equations. These 
issues have been covered in abundant literature 
(see, for instance, [1–10] and many other publica-
tions). Another important factor for SINS accuracy 
is the proper synchronization of measurements from 
inertial sensors: accelerometers and angular rate 
sensors (ARS), or gyroscopes [11–18], and for aid-
ed SINS, synchronization of aiding data and SINS 
autonomous solution [19–24]. 

The paper analyzes the effect of delays in inertial 
sensor measurements – time intervals between the 
data readout and its input to the navigation algo-
rithm – on SINS accuracy. These delays may be 
caused by SINS hardware features, raw sensor data 
processing methods, lags during data transmission 
by communication lines and real-time filtering. 

The influence of delays on the SINS accuracy 
depends on the object trajectory: under intensive 
maneuvering, vibration, or oscillations even small 
delays may critically affect the SINS accuracy.  

Further we consider the inertial sensor delays to 
be stable, which is conditioned by the rather strict 
cyclogram of SINS hardware operation. This model 
helps to determine the level and evolution of the nav-
igation errors and obtain some analytical estimates. 

The main objectives of this study, which define 
its structure, are given below: 

 to obtain the disturbing components for
the sensor delays in the right sides of
SINS error linear differential equations,
which are known to well describe the
time evolution of errors for rather accu-
rate SINS [1–3];

 to identify SINS case angular motions,
which are easily reproducible in laboratory
experiments, that can be used to detect and
estimate the delays by the output errors in
SINS inertial data, and, on the other side,
to explain the evolution of the latter;

 for the maneuvers short as compared to
the Schuler period, to obtain the analyti-
cal expressions to estimate the delay im-
pact under arbitrary angular motion in la-
boratory experiments, when the meas-
urement center of the accelerometer unit
can be considered stationary;

 to analyze, based on these expressions,
how the delays in accelerometer, gyro-
scope data, and between the axes of one
type sensors influence the navigation er-
rors, and to propose delay algorithmic
compensation.

Along with this, the paper supplements, generaliz-
es, and systematizes the findings obtained in [11–18]. 
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MODEL OF INERTIAL SENSOR  DATA 
DELAYS 

The SINS sensitive elements are the accelerome-
ters and angular rate sensors, or gyroscopes. The 
accelerometers measure the specific force f = w – g 
projected on their sensitivity axes, where w is the 
sensor absolute acceleration, and  g is the specific 
gravity force. The gyroscopes measure the projec-
tion of the absolute angular rate ω on their sensitivi-
ty axes. Here we assume that the sensors measure 
the instantaneous values of f and ω, however, dis-
cussions will be true for integrating sensors, too. 

As a rule, the sensors sensitivity axes are struc-
turally or algorithmically aligned with the axes of 
some orthogonal trihedral p, referred to as the SINS 
frame. We take the sensitivity axes of sensors and 
trihedral p to be codirectional. 

Denote the measurement delay for the i-th axis 
of accelerometer channel by τ consta

i  , and for the 

i-th axis of gyroscope channel, by τ constg
i  . The

readings of accelerometer unit pf   and gyroscope 

unit ω p  in the SINS frame p are described with the 

following models: 
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Here fp and ωp are the physical values of specific 
force and angular rate, t is the current time; lower 
index of any vector here and below denotes the co-
ordinate frame, and decompositions are made on 
the assumption of delay smallness. 

Along with the delay-induced errors, the sensor 
measurements contain other errors such as due to 
bias and scale factor errors. However, linear system 
of SINS error equations allows analyzing the partial 
contribution of each navigation error source sepa-
rately, so further we focus only on the model of the 
delay-induced error (1). 

The formulas (1) provide compact index and 
vector-matrix notations of the sensor errors 

τ
p p pf f f    and τν ω ωp p p  : 
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where diag[τ ], diag[τ ]a a g g
i iT T  . Since the right 

part of Eqs. (2) are proportional to the derivatives 
, ωp pf  , data delay in the sensor channels is mani-

fested during the object maneuvering, when the 
measured specific force and angular rate greatly 
change with time. 

DELAY EFFECT  
ON SINS NAVIGATION ERRORS 

The SINS errors are described with a system of 
linear differential equations [1–3], which have the fol-
lowing form in the wander azimuth navigation frame: 
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where indices 1, 2, 3 denote the vector component 
along the axis of trihedral y – the image of refer-
ence geographical trihedral x calculated by SINS 
[1–3]; 

Δri are the positioning errors; 

δVi are the velocity dynamic errors [1–3]; 

αi are the vertical dynamic errors; 

β3 is the azimuth kinematic error; 

а is the Earth’s equatorial radius; 

Δfi are the overall errors of accelerometer channel 
projected on the axes of trihedral y; 

νi are the overall errors of gyroscope channel pro-
jected on the axes of trihedral y, the prime sign «ʹ» 
denotes the parameters calculated in the navigation 
system; 

iV   are the components of the vector of linear velocity 
with respect to the Earth in trihedral у; 
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i  are the components of the  angular rate vector of 
the model reference trihedral у; 

iu  are the components of the Earth’s angular rate 
vector in trihedral y; 

ωi  are the components of the absolute angular rate 
vector of trihedral y in its axes. 

The overall errors in the SINS trihedral p are the 
differences between the measured sensor signals 
and the physical values that could be measured by 
ideal sensors installed on the orthogonal axes of 
trihedral p. For gyroscopes, ν ω ωp p p  , where 

ω p  is the measured angular rate ωp. Similarly, for 

accelerometers p p pf f f   , where pf   and fp are 

the measured accelerometer signals and the physi-
cal values of specific force, respectively. Thus, the 
values Δfi and νi in the right part of (3) are formed 
by reprojecting Δfp and νp onto the trihedral y: 

ν ν,y zp p y zp pf D f D     ,  (4) 

using the matrix zpD  calculated by SINS and relat-

ing the SINS trihedral p with the quasiinstrument 
trihedral z, which is the image of the platform trihe-
dral for SINS. For more detailed description of 
these trihedral, the reader is referred to [1–3].  

Formulas (3)-(4) can be used to analyze the influ-
ence of an arbitrary combination of delays at any tra-
jectory. Rewrite the system (3) in vector-matrix form: 

τδx Ax  ,  (5) 

where x = [Δr1, Δr2, δV1, δV2, α1, α2, β3]T is the state 
vector of system (3); A is its matrix; δτ are the de-
lay-induced instrumental errors for the delays  

τ τ τ τν ν,y zp p y zp pf D f D      ,  (6) 

where τ τν,p pf  are found using (2). The system (5) 

is integrated with initial conditions x(0) = 0 to ob-
tain the solution x(t) corresponding to the delays. 

ANALYTICAL ESTIMATIONS OF NAVIGA-
TION ERRORS UNDER SHORT MANEUVERS 
AS COMPARED TO THE SCHULER PERIOD 

As is known, the SINS error equations system 
(3) has a typical Schuler period T0 = 84.4 minutes.
Thus, Δfy, νy in the right side of (3) can be classified
as fast or slow by comparing with T0. From this
viewpoint, the maneuvers during operation and la-
boratory experiments are mostly short, i.e., fast.

For a fast maneuver, the vectors of delay-
induced errors (6) are assumed impulse functions. 
For them, the increments in components of the state 
vector in the error equations system (3) during the 
maneuver can be calculated approximately avoiding 
precise integration. This qualitatively explains some 
effects observed in the experiments and helps to 
obtain analytical expressions relating the navigation 
errors and delays in sensor measurements. The es-
timation accuracy depends on the maneuver dura-
tion and can be evaluated by comparing with the 
numerical solution of equations (5) if required.  

It is known that SINS with 1 nm/h positioning 
error features accelerometer biases Δf~10–3 m/s2 
and gyroscope drifts ν ~10–2 deg/h, where ~ denotes 
the order of the magnitude. Further we estimate the 
order of delay-induced errors with these typical 
values. 

If the vector fp is set in moving frame p with an-
gular rate ωp, from theoretical mechanics we know 
its absolute derivative / ωp p p pdf dt f f    [25–

28], where the dotted character is the vector local 
derivative formed by the derivatives of each vector 
component with time. If all formula terms are con-
sidered to have the same order, then ωp p pff  . 

For the angular rate vector ωp × ωp = 0 and 
ω / ωp pd dt   . Also note that under instantaneous

mechanical action on SINS fp also changes instan-
taneously and at this moment pf  , however,

the applied forces are actually changing continuous-
ly, so we take ωp p pff  . Hence, 

τ ττ τ ω ν τ ω,a a g
p p p p p pf f f     .

Consider a case with sensor delays of the order τi 
~ 10–3 s with motion parameters  | fp | ~ 50 m/s2, 
| ωp | ~ 60 deg/s, 2ω 200 deg/p s  , which are quite 

typical, for example, for an airborne SINS. 

Then τ 2 210 m/spf   , | νp | ~ 0.1 deg/h. Hence it

is seen that the error due to the delays τi ~ 10–3 s
may be an order higher than the typical instrumen-
tal errors of a 1 nm/h grade SINS.  

Accelerometer impulse errors are denoted with 
Δf1, Δf2 in the right side of system (3). It can be 
noted that within their action period T only the dy-
namic velocity errors δVi change significantly, and 
the other components of the state vector (3) vary 
slightly. This can be checked using the estimates of 
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the right sides of the error equations and by model-
ing. Thus, the increments of velocity dynamic er-
rors are given by the formulas: 

τ τ
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,δ ( ) ( ) δ ( ) ( ) .
T T
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Consider the impact of gyro impulse drifts on the 
navigation errors. Recall that in the theory of iner-
tial navigation the angular errors are divided into 
dynamic and kinematic ones [1–3]. The kinematic 
error is characterized by the small rotation vector β, 
which, in its turn, is conditioned by the initial 
alignment errors of SINS and gyroscopes, including 
the drifts due to delays. The vector βy in trihedral y 
satisfies to the kinematic error equations: 
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Here and below the superscript «ˆ» denotes the 
operator of the left vector multiplication with in-
verse sign, for example, ω̂ β ω βy y y y    ; νy is the 

gyroscope overall drift. 

The linearity of (8) helps to study the partial con-
tribution of gyroscope data delay β y

  described as 

τ τ τˆβ ω β ν β (0) 0,y y y y y
    . 

The angular rate ω y  of trihedral у is commensu-

rate with the Earth’s rate (15 deg/h) even under mo-
tion at hundreds m/s and is multiplied by the vector 
βy with small absolute magnitude. Therefore, for the 
impulse drift due to gyroscope data delay in a fast 
maneuver, the first term of (8) can be neglected, 
and the equation is simplified to  

τ τβ νy y .  (9) 

Rejecting τω̂ βy y  is tantamount to the assumption 

of the trihedral y stationarity, which is true over the 
time interval when its attitude changes slightly.  

Now we qualitatively describe the effect of gy-
roscope impulse drifts on the navigation errors. 
Components τ

yν  are present in the right sides of 

equations for αi and β3 and result in fast changes in 
them. Then it is known [1–3] that any errors in gy-
roscope channels affect only the kinematic error β 
included in the dynamic error α: α = β + γ, where γ 
is the small rotation vector corresponding to the po-
sitioning error [1–3], which barely changes during 
the fast maneuver. Changes in β affect the terms gαi 

in equations for the velocity dynamic errors, which 
cannot be neglected as the factor g is rather large. 
The relevant formulas are given below  
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In the expanded form: 
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Note that if it is required to accurately calculate 
the delay-induced navigation errors within a ma-
neuver with a period commensurate with the 
Schuler period (of the order of tens of minutes and 
more), accelerometer and gyroscope errors for the 
studied trajectory should be calculated continuously 
using (1) and (4). Then they should be substituted 
to the numerically integrated error equation system 
(3).  

The obtained approximate formulas can be help-
ful to describe the navigation errors due to inertial 
sensor data delays in fast rotations during laborato-
ry experiments or in short maneuvers.  

Now we consider in more detail SINS fast rota-
tions about the fixed axes with stops at some posi-
tions typical for laboratory experiments. Out of 
these trajectories we select those, where the delays 
lead to considerable navigation errors.  

EFFECT OF ACCELEROMETER DATA 
DELAYS ON NAVIGATION ERRORS 

IN LABORATORY EXPERIMENTS 

As is known, the measurements of accelerometer 
unit are recalculated to some point – the measure-
ment center. For the rate tables, the rate and accel-
eration of this point are commonly rather small, and 
the accelerometer measurements are dominated by 
the specific gravity force g. In this approximation the 
point is considered fixed, and SINS angular rotations 
are made about it. Based on this assumption, we ob-
tain the analytical expressions explaining the exper-
imental observations associated with inertial sensor 
data delay, and make the numerical estimates. 

With the fixed measurement center and no in-
strumental errors, the projections of vector g meas-
ured by the accelerometer unit are given by fp = 
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Dpxgx, gx = [0  0  g]T = const, where Dpx is the atti-
tude matrix of SINS trihedral p relative to the refer-
ence frame x. The last formula takes into account 
that in the geographical trihedral the vector g is 
codirectional with the vertical – third – axis and 
that the accelerometer measures the projection of g 
with inverse sign. Therefore, .p px xf D g 

For the pair of moving trihedrals Poisson equa-
tions ˆ ˆω ωpx x xp xp pD D D  are true, where the term 

ω̂x xpD  can be neglected to calculate pf  over a short

time period: for the rotations | ωp |~1 s–1, and | ωx | ~ 
5∙10–5 s–1, i.e., approximately equal to the Earth’s 
angular rate. 

In this approximation, 

ˆ ˆ( ω ) ωT
px xp xp p p px

TD D D D    

and 
τ

ω̂

a a
z zp p xp p

a a
xp px x xp p px x

f D T f D T f

D T D g D T D g

     

   

 

 .     (12) 

Note that in (12) ˆ, ω ,pz p yD g   calculated by SINS 

navigation algorithm can be used instead of the ex-
act parameter values. The difference from the pre-
cise formula (12) in this case has the second order 
of smallness, which can be neglected in linear ap-
proximation.  

Consider an important case when the accelerom-
eter measurements are shifted with respect to gyro-
scope measurements by the same time τa for each 
axis. Then Ta = τaE and 

τ ˆ ˆω τ ωa a
x xp p px x xp p px xf D T D g D D g     . 

It is known [25, 28] that ˆ ˆω [ω ]xp p px p xD D  , where 

ˆ[ω ]p x  is the operator of the trihedral  p angular rate 

ωp projected on trihedral х, which is similar to re-
calculation of the vector Dxpωp = [ωp]x. Here ˆ[ω ]p x

denotes the operator ω̂ p  of trihedral p angular rate, 

set in the other trihedral х. 

If the frames х and р coincide, ˆ ˆ[ω ] ωp p p . 

From the formula for τ
xf and equality 

ˆ[ω ] [ω ]p x x p x xg g    it follows that 

τ τ [ω ]a
x p x xf g   .  (13) 

If the maneuver time is small as compared to the 
Schuler period, it leads to accumulation of the ve-
locity error dynamic component (7): 

 τ

0 0
δ ( ) τ [ω ] ( )

T Ta
y x p x xV f t dt t dt g     . (14)

Denote 

1 2 30 0
[ω ] ( ) ( )ω ( ) [ , , ]

T T
T

p x xp pI t dt D t t dt I I I    .

Then 

 2 1δ τ τ 0
Ta a

y xV I g g I I    .      (15) 

The formula (12) allows studying the influence 
of arbitrary constant delays on accelerometer data. 

The formula is lengthy, so generally it is rational 
to conduct numerical calculations. With the same 
delays in all three axes, formulas (12) are signifi-
cantly simplified to (15), which is also convenient 
for analytical estimates. 

ESTIMATING THE DELAYS 
IN ACCELEROMETER CHANNEL DURING 

SINS ROTATION ABOUT THE HORIZONTAL 
AXIS 

Experimental estimation of delays in accelerome-
ter channel is of practical interest. Consider some 
scenarios of these experiments. Suppose that the gy-
roscope channel is ideal, and data in accelerometer 
channel come with a constant delay τ same for all 
three axes. Consider SINS rotation about the sensi-
tivity axis located in horizontal plane. Let a roll rota-
tion about the axis x2 oriented to the North (Fig. 1) 
be conducted, and at initial time t0 = 0 the angles 
ψ(0) = θ(0) = γ(0) = 0, and at time t = T γ = γ(T). 

Fig. 1. SINS roll rotation: attitude of SINS and reference axes 
and the measured gravity force vector g. 
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From (12) and (14) we obtain 

  τ
1

2 γ0

γ

[ω ] 0 γ 0 , τ , 0,

γ( ) ( ),

δ ( ) τ ( ) 0 0 .

T a
p x z

T
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It should be mentioned that Iγ(T) ≠ γ(T): at each 
rotation by 2π, 2π is added to Iγ, and the roll angle γ 
returns to its initial zero value.  

To estimate the delay τa it is convenient to use 
SINS rotation by 2π or by the integer number of 
rotations 2πn, which is easily realizable at any test 
bench. Each rotation by 2π leads to error accumula-
tion δV1 = 2πgτa. With τa = 1 ms we obtain δV1 = 
0.062 m/s. For a rotation with a constant rate the 
dependence of δV1(t) over a short time interval is 
presented in Fig. 2. The solution has been obtained 
by integrating the error equations with zero initial 
conditions over 100 s. 

It follows from the above that delays in accel-
erometer channel critically degrade SINS accuracy 
during intensive maneuvering. For example, when 
an aircraft makes multiple roll or loop maneuvers, 
the errors will accumulate in multiples of the num-
ber of maneuvers, if the axes of these rotations have 
approximately the same orientation in geographical 
axes. This error accumulation during rotations in 
one direction can be used in laboratory experiments 
to more accurately estimate the delays. 

 
 
Fig. 2. Roll rotation by 2π with constant rate 
and the relevant linear velocity error. 
 

Along with the delays, SINS navigation errors 
are influenced by the other factors including first of 
all sensor instrumental errors and accelerometer 
lever arm effect. They should be taken into consid-

eration, and if they are significant, distinguish be-
tween the errors due to accelerometer proof mass 
misalignments, instrumental errors, and delays. 

Consider for example the above rotation about a 
fixed axis by 2π under instrumental errors described 
with a widespread model of SINS constant instru-
mental errors [1–3]: 

( ) , ω ( )ω ν ,p p p p p pf E f f E          

where pf   is the specific force measured by the ac-

celerometers, fp is its physical value; 

Γ is the matrix composed of the scale factor errors 
(on the main diagonal) and misalignments (nonor-
thogonalities) of sensitivity axes (off the diagonal); 

Δfp is accelerometer bias vector; 

ω p  is the angular rate measured by the gyro-

scopes, ωp is its physical value; 

Θ is the matrix of scale factor errors and misa-
lignments, similar to Γ; 

νp is the gyroscope drift (bias) vector. 

As is known, constant projections of overall ac-
celerometer biases on the horizontal plane and gy-
roscope drifts on eastern axis are compensated dur-
ing SINS initial alignment. In this case SINS 
alignment errors α1, α2, β3 compensate the instru-
mental errors with the projections of specific gravi-
ty force g and Earth’s angular rate u. Here, [1–3] 

2 1 1 1
1 2 3

ν
α , α , β tgφ (0)

cosφ (0)

f f f

g g u g

        


. 

As a rule, SINS reference trihedral after align-
ment is aligned with the cardinal directions, then 
index 1 corresponds to the eastern direction E, and 
index 2, to the northern direction N. If these condi-
tions are met, SINS has the errors consistent with 
the northern drift ν2. If the compensation condition 
is violated, for example when SINS is turned to the 
other angular position, immediately after the turn 
the navigation errors increase. 

Note that after rotation by 2π about an axis fixed 
relative to the Earth, the compensation condition for 
gyroscope drifts, accelerometer biases, axis nonor-
thogonalities, and scale factor errors is still satis-
fied. The compensation condition for them is only 
violated during the rotation. However, if the ma-
neuver period is much shorter than the Schuler pe-
riod and SINS has been calibrated, the navigation 
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errors due to these instrumental errors will change 
slightly during the rotation. 

Consider how the remaining instrumental errors 
affect the navigation solution during 2π rotation. Gy-
roscope scale factor errors during the rotation result 
in accumulation of attitude errors αi. It follows from 
the error equation system (3) that the errors αi accu-
mulated during the maneuver cause the velocity er-
ror δVi(t) proportional to sinω0t at the initial period, 
where ω0 is the Schuler frequency. This component 
of vector δVi(t) differs from the stepwise change of 
δVi during the rotation due to the delay, and there-
fore can be distinguished from it. 

Now we demonstrate that gyroscope sensitivity 
axes misalignments lead to the drifts in the right 
part of (3) with zero mean in geographical axes 
when any gyroscope axis is rotated by 2π. Let the 
trihedrals x and p coincide at the initial time point 
and the axis is rotated about some fixed axis with 
the direction unit vector e by angle φ. Since the axis 
unit vector e is fixed, and the trihedrals x and p co-
incide at the initial time point, ex = ep = const. Ma-
trix Dxp is expressed with the formula [28] 

ˆcosφ sin φ (1 cosφ) T
xpD E e ee    . 

Here, ω φ , ν ω φp p pe e       and

ˆν ν cosφ sinφ (1 cosφ) φT
x xp pD E e ee e         .

Integrating this formula over the 2π rotation time 
T with account for averaging 

2π 2π

0 0 0 0
sinφφ sinφ φ cosφφ cosφ φ 0

T T
dt d dt d       

yields 

0
β ν 2π ( )

T
T

x xdt e e e   .

The given formula describes the kinematic error 
accumulated during the rotation about an arbitrary 
fixed axis due to the gyroscope scale factor errors 
or misalignments forming the matrix Θ. During the 
rotation about any sensitivity axis, the vector e has 
the only non-zero component equal to one. If it is at 
the position of i, then eTΘe = Θii. If the matrix Θ 
includes the misalignments only, then Θii = 0, Θi≠j ≠ 
0, eTΘe = 0, which was to be shown. 

The assumption that the trihedrals x and p coincide 
at t = 0 does not limit the generality: at initial arbitrary 
orientation of x and p the right part of νx = Dxpνp is 
multiplied at the left by the constant initial attitude 

matrix of x and p, which does not affect the obtained 
result. 

Emphasize that in the laboratory experiment the 
accelerometers measure the projections of g. Howev-
er, when the SINS onboard an object is moving, it is 
subject to accelerations exceeding manifold g. During 
the maneuver the measured acceleration (specific 
force) is not any more aligned with the vertical axis of 
the reference trihedral х. Therefore, to calculate the 
navigation errors, numerical integration of (3) should 
be conducted rather than applying (14) and (15). It 
follows from (1) that under intensive maneuvering 
with large and fast changing accelerations, the delay-
induced accelerometer errors and, correspondingly, 
SINS navigation errors are expected to grow. 

Velocity errors during the rotation with different 
accelerometer delays are derived from (12). For the 
rotation about the first SINS axis p1 considered 
above, and τ2 ≠ τ3 for the axes p2 and p3, the follow-
ing is substituted to (12): 

 2 3

0 sin γ cos γ

1 0 0 , diag 0,τ , τ ,

0 cos γ sin γ

0 0 0 0

ω̂ 0 0 γ , 0 .

0 γ 0

a
xp

p x

D T

g

g

 
   
   
   
       
       




 (16) 

Integrating the right part of (12) yields 

2 3 3 2
1

τ τ τ τ
δ sin2γ

2 2
V g I g

 
  .  (17) 

Therefore, over a complete rotation by 2π the ve-
locity error proportional to the average value of (τ3 
+ τ2)/2 is accumulated. In rotations by arbitrary an-
gles, the velocity error is no longer proportional to
the rotation angle, however, the function sinγ is ze-
roed at rotations by angles multiple of π/2, and the
difference τ2 – τ3 cannot be detected by δV1.

Repeating the experiments with 2π rotations for 
all three sensitivity axes, which are initially set to 
the horizontal plane along the northern direction, 
helps to estimate the delay sums:  

1 2 1 2 3 2 3 1 3τ τ τ , τ τ τ , τ τ τ      . 

In the right part of equations, the symbols τi  de-
note the estimates following from (17): 

1
1τ (πg) δ ( )k

k V T  , where 1δ ( )kV T  is the accumula-
tion of velocity error in the k-th experiment. Solv-
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ing the given equation system with respect to τi, we 
obtain the estimates of the delays:  

   

 

1 1 3 2 2 2 1 3

3 3 2 1

1 1τ τ τ τ , τ τ τ τ ,
2 2

1τ τ τ τ
2

     

  
. 

Negative estimates mean that accelerometer data 
are ahead of gyroscope data. 

Therefore, SINS rotations about the axes of the 
SINS trihedral, which are close to the inertial sen-
sor sensitivity axes, with further fixation cause the 
stepwise accumulation of the velocity error due to 
accelerometer data delays. The simplest expressions 
for these errors are obtained if the rotation axes are 
fixed relative to the Earth and are aligned with a 
cardinal direction, such as the North. We propose a 
three-rotation scenario for estimating the accel-
erometer delays in all three axes. 

 
EFFECTS OF GYROSCOPE DATA DELAYS 
AND THEIR DETECTION IN LABORATORY 

EXPERIMENTS 
 

We use the Eqs. (6) and (9) assuming that the 
maneuver is short compared to Schuler period:  

ν ω ν ω , β ωg g g
z zp p x xp p x xp pD T D T D T        . (18) 

Integrate the equation for τβx  by parts assuming 

that τβ (0) 0x  : 

0

0

0 0

τβ ( ) (τ) ω (τ) τ

(τ) ω (τ)

(τ) ω (τ) | (τ) ω (τ) τ.

t

x

t

tt

gt D T dxp p

gD T dxp p

g gD T D T dxp p xp p

 

 

 










 (19) 

During the maneuver the matrix Dxp changes 
mostly due to fast motion of trihedral p in inertial 
space described by Poisson equations ω̂xp xp pD D  . 

Therefore,  

0

0

τβ ( ) (τ) ω (τ) |

ˆ(τ)ω (τ) ω (τ) τ

t

t

g
x xp p

g
xp p p

t D T

D T d

 


.           (20) 

Hence it follows that if the delays in all three 
channels are identical and equal to τg, then Tg = τgE 

and 
ˆ ˆω ω τ ω ω 0g g

p p p pT  
. If the motion starts and 

ends with a quiescent state relative to the Earth, then 

ωp(0) = ωp(t) = 0 and 
τβ ( ) 0x t  . During the motion 

τβ ( ) ( ) ω ( ) τ [ω ( )]g g
x xp p p xt D t T t t  , (21) 

which suggests the following interpretation: τgω 
in linear approximation is equal to the Euler rota-
tion vector [25, 28] of the body with angular rate ωp 
within the delay time τg. 

If Tg ≠ τgE, then ω̂ ω 0g
xp p pD T   and the attitude 

error may accumulate at the stop after the turn. 

Note that the arbitrary matrix Tg allows the rep-
resentation below 

 1 2 1 3 1 1τ diag 0,τ τ , τ τ τ δg gT E E T      , (22) 

distinguishing between the delays relative to the 
accelerometers τ1 and mutual delays of measure-
ment channels characterized by the matrix δTg. The 
first axis for the τ1 measurement was selected con-
ditionally and can be substituted with any other. As 
a result, we obtain the following expression: 

1 0

0

β ( ) τ (τ)ω (τ) |

ˆ(τ)ω (τ)δ ω (τ) τ

t
x xp p

t g
xp p p

t D

D T d

  


.           (23) 

Consider the effects of SINS errors under delays 
of gyroscope data relative to the accelerometers and 
between the gyroscope axes separately.  

Delay of Gyroscope Triad Data Relative to the Ac-
celerometer Triad 

 
If the motion starts from the quiescent state, then 

it follows from (10), (11), and (21) that  
τ

τ

0 0

β ( ) τ [ω ( )] ,

ˆ ˆδ ( ) β ( ) τ [ω ( )] .

g
x p x

T Tg
y x x x p x

t t

V T g t dt g t dt



    
(24) 

Denoting 
0

[ω ( )]
T

p xI t dt  , we obtain  

 2 1

δ (T) τ

τ 0

g
y x

Tg

V I g

g I I

  

 
,              (25) 

which coincides with (15), if τa is substituted with (– 
τg). Therefore, rotation about the horizontal axis coin-
ciding with one of sensitivity axes results in the error 
δVy, the same as under accelerometer channel delay 
relative to the gyroscopes, but with the opposite sign. 

It should be emphasized that, unlike the accel-
erometer delays, gyroscope delays induce the ac-
cumulation of navigation errors due to the errors in 
g projections at the turns rather than the specific 
force measured by the accelerometers. However, in 
ground-based experiments during the turns, when 
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the acceleration of the accelerometer unit measure-
ment center is negligibly small compared to g, f ≈ –
g, which conditions the coincidence of (15) and 
(25) accurate to the sign.

It should be mentioned that (25) would be true
not only for laboratory experiment with slow-
moving accelerometer measurement center, but also 
for arbitrary space maneuvering. 

Data Delays between Gyroscope Axes 

With different delays in gyroscope sensitivity ax-
es, the integral term in (23) will be different from 
zero. In some maneuvers, the related attitude errors 
may accumulate and serve as the main reason for 
increased errors in SINS inertial data. 

Further we describe some motions that can be used 
to identify the delays and can be reproduced in the 
laboratory tests. Some of these motions were deter-
mined in [11–16]. The results described in these ref-
erences may be obtained using the formulas above. 

Assume that the angular rate of SINS trihedral р 
is determined by its motion relative to the geo-
graphical trihedral x, which can be considered fixed 
within an experiment rather short compared to the 
Schuler period. 

Substitute 2 1 2 3 1 3τ τ τ , τ τ τ    in (22), then

2 3diag[0 τ τ ]gT  . (26) 

One of the motions affecting the mutual delays 
in gyroscope channels and easily reproducible on 
the test benches is harmonic oscillations about the 
Earth-bound horizontal axis non-collinear to one of 
the gyro sensitivity axes. 

To obtain compact formulas, it is convenient to 
direct the oscillation axis to the North along the axis 

2x  (here and below x° denotes a trihedral with the 
axes aligned with the cardinal directions) according 
to Fig. 3.  

Fig. 3. Oscillations about a horizontal axis directed to the North. 

Assume that at initial time the heading, pitch, and 
roll angles [1–3] are respectively ψ(0) = ψ0, θ(0) = 
γ(0) = 0, and the angle κ sets the SINS rotation rela-
tive to 2x  and κ(0) = 0. The formulas for SINS trihe-
dral р with the axes aligned with the axes x° under 
ψ(0) = θ(0) = γ(0) = 0 are given below. 

For this motion, 
τ

0 0

0

0 0

0

0

0

2 0 0

0

β ν ν ω ,

cosψ cosκ sin ψ cosκ sin κ

sin ψ cosκ 0 ,

cosψ sin κ sin ψ sin κ cosκ

sin ψ

κ cosψ ,

0

sin ψ cosκ

ν κτ cosψ cosψ .

sin ψ sin κ

g
x p px x p x p

x p

p

x

D D T

D

  

 
   
   

 
    
  
 
   
  

  





 

 



(27) 

For the case of harmonic oscillations simulated 
on automated test beds, κ = κ0sinωt, then 

2
0 2

0 0

0 0

0 0

ν κ τ ω

sin ψ cos(κ sin ω )sin ω

cos ψ cosψ sin ω

sin ψ sin(κ sin ω )sin ω

x

t t

t

t t

 

 
   
  



.    (28) 

Since the oscillation period is much shorter than 
the Schuler period, SINS errors are mostly affected 
by the average values of the right part of (28). The 
first two components of the vector ν

x
 are odd 

functions, consequently, having zero mean. In [11] 
А.V. Kozlov determined that the mean of the third 
component is accurately calculated for an arbitrary 
amplitude κ0: 

 2
0 2 0 1 0

1ν κ τ ω sin 2ψ (κ ) 0 0 1
2

T

x
J ,    (29) 

where 
π

1 0 00

1(κ ) sin sin(κ sin )
π

J x x dx   is the Bessel 

function of the first kind. For oscillations with ra-
ther small amplitude, κ0 ≪ 1 (in rad) and 

 2 2
0 2 0

1ν κ τ ω sin 2ψ 0 0 1
4

T

x
 .    (30) 

Thus, under non-synchronous data readout from 
the gyroscopes, oscillations can produce non-
averaged drifts in the reference trihedral and the 
right part of the error equation. Maximal drift is ob-
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served if the oscillations axis makes angles  
ψ0 = ±π/4 with the gyroscope sensitivity axes.  

Denoting ν ν
x

  , from (30) we obtain  

0
2 2

2 ν 1 νκ
ω τ π τf

  ,              (31) 

where f is the frequency corresponding to the angu-
lar frequency ω in Hz. This formula is convenient 
for numerical estimates. Take the drift ν = 0.01 
deg/h typical of a 1 nm/h SINS, and assume that τ2 
= 10–6 s. Then (31) gives the dependence κ0(f) pre-
sented in Fig. 4. 

Mention that with f = 0.5 Hz κ0 = 8° and these 
oscillations can be reproduced at the rate table, and 
with f = 100 Hz κ0 = 2.4ʹ, which is realizable during 
SINS vibration tests or its installation on high-
vibration objects. 

Precession motion with precession and self-
rotation frequency ratio 1:2 is considered in [13], 
where drift with nonzero mean in geographical 
frame also occurs due to gyroscope data delays. 
Reproducing this motion in experimental conditions 
requires a three degree-of-freedom rate table. 

 
 
Fig. 4. Dependence κ0(f) [rad] in log scale for ν = 0.01 deg/h, 
τ2 = 10–6. 
 

This motion can be used to study how detuning 
of rotation frequencies impacts the drifts due to gy-
roscope data delay. It turns out that even a minor 
detuning significantly lowers the drift since it no 
longer contains the constant non-averaged compo-
nent. The reader is referred to [13] for details. An-
other type of motion with frequency ratio 1:2 but 
without monotonous rotations is described in [11]. 

The effect of frequency detuning on the drift 
suggests that in general case the gyroscope data de-
lays influence SINS errors to a much lower degree 
than under special motions considered above. The 
delays are expected to be more influential under 
some cyclical motions. 

The formula (30) can be applied to estimate the 
data delays between gyroscopes. More complicated 
techniques are needed to distinguish between the 
navigation errors due to data delays between the 
gyroscopes and instrumental errors if required. 
Some of these techniques are discussed in [11]. 

 
RECOMMENDATIONS ON REDUCING  

THE DELAY-INDUCED ERRORS 
 

Inertial sensor data delays critically affect SINS 
errors in some maneuvers. Therefore, synchroniza-
tion of SINS inertial sensor measurements, first at 
the hardware level, is of primary importance during 
processing. However, if due to some reasons cannot 
be eliminated, their effect can be mitigated algo-
rithmically. 

To compensate the gyroscope data delay, the 
kinematic equations 

ˆβ ω β ν , β (0) 0, ν ωg
y y y y y y zp pD T           

can be integrated. 

The right part of equations is calculated by the pa-
rameters determined by SINS algorithms, and matrix 
Tg can be estimated using the method described 
above, for example, during the oscillation experi-
ment. The value τβ y  (see the section Effects of Gyro-

scope Data Delays and Their Detection in Laborato-
ry Experiments) can be used to correct the matrix 

zpD  or added to the right part of equations 

ˆˆ(2 )y y y y y zV u V g f           for the horizontal compo-

nents 1 2,V V   of vector yV   as a correction τβ̂ y yg   calcu-

lated by (10). Note that integrating the equation for 
β y
  smoothens the noise ν y

  in its right part. 

The errors due to accelerometer channel data de-
lays are described by (1). However, its applicability 
for delay compensation depends of many factors: 
accelerometer noise, computation frequency, delay 
values, features of trajectories, and therefore re-
quires additional research for each type of SINS 
and its operation conditions. 

 
CONCLUSIONS 

 
The paper analyzes the influence of data delays 

in the channels of SINS inertial sensors – gyro-
scopes and accelerometers – on SINS navigation 
errors. Different combinations of delays in groups 
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of one-type sensors and between different sensors 
have been studied. Formulas for the biases or drifts 
due to time delays in the right part of SINS error 
equation system are presented for each case. 

Qualitative analysis of SINS navigation errors 
dependency on the delays has been conducted for 
typical short maneuvers as compared to the Schuler 
period. Analytical expressions have been obtained 
for estimating the delay effect under arbitrary angu-
lar motion in laboratory experiments, with the 
measurement center of accelerometer unit consid-
ered to be fixed. This, in its turn, allows developing 
test scenarios for detecting the delays. 

Accelerometer data delays are shown to result in 
the overall accelerometer biases in the error equa-
tions, proportional to the derivatives of the sensor 
data. 

Delays of gyroscope triad data (identical for all 
three axes) relative to the accelerometers also con-
dition the overall accelerometer biases, however, 
they are proportional to g projections and are insen-
sitive to the accelerometer measurements.  

Microsecond-order data delays between the gy-
roscopes in different axes lead to significant overall 
drifts under specific types of motions reproduced 
by the test bench or caused by oscillations or vibra-
tions. Test scenarios that can be used to detect and 
estimate the delays have been considered, and rec-
ommendations on their algorithmic compensation 
are provided. 
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