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Abstract: The article discusses the problem of estimating the spacecraft trajectory parameters based on data provided by GNSS 
(Global Navigation Satellite System) receiver and onboard spacecraft motion prediction algorithms. The traditional approach to 
solving the mentioned problem relies on Kalman filtering techniques for estimating the spacecraft's coordinates and velocity. In 
this case the navigation algorithms in the onboard computer must meet the technical requirements for maximum reduction in 
computational load. The paper proposes a method of decomposition for onboard integration algorithm using three parallel sec-
ond-order filters, which significantly reduces the computational load of the algorithm while maintaining the accuracy.  
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INTRODUCTION 

Spacecraft autonomous navigation is one of key 
problems providing the spacecraft payload opera-
tion. Currently this problem is solved based on the 
data from the onboard spacecraft motion prediction 
algorithm and GNSS-derived data. Different ap-
proaches to this problem are covered in some Rus-
sian and international publications [15]. 

The problem of estimating the motion parame-
ters of the vehicle center of mass (coordinates and 
components of the velocity vector) is solved on 
board the spacecraft using two information sources:  

1) motion prediction with unlimited growth of er-
rors with time;

2) GNSS measurements with the errors modeled
by the stationary random process.

To finally estimate the motion parameters of the 
spacecraft center of mass, these data are fused to 
generate the integrated solution, which is the mean-
square optimal estimate. 

Further we explain the problem statement of fus-
ing the data from onboard spacecraft motion predic-
tion algorithm and GNSS data in the general form, 
similar to the description of strapdown inertial nav-
igation system aiding in [6]. 

Let the behavior of a dynamic object – the 
spacecraft – be described by the equations  

   0 0,, ,  x f x u x t x 

where x is the state vector, u is the data on the ex-
ternal forces acting on the spacecraft.  

The current state vector x is determined using the 
following data: 

0 0 0δ , δ , x x x u u u   

where δ𝑥଴ is the error of the initial state vector, δ𝑢 
is the error in modeling u. 

The system defining the state vector x is de-
scribed with the equations 

   0 0, , ,f x ux x t x    

which are further traditionally referred to as the 
mechanization equations. 

The error equation for the value 

δx x x 

is given as follows in the linearized form:  
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GNSS receiver provides the measurements z of 
the vector x:  

ζ,z x   

where ζ is the error in GNSS measurements.  
The linearized measurement is generated: 

δ  δ  ζ.z z x H x                      (1) 
The estimator structure using Kalman filtering is  

 δ δ δ δ ,x F x K z H x                (2) 

where K is the gain selected according to the Kal-
man procedure. 

The estimate x(+) of the state vector x is deter-
mined as 

   δx x x   . 
In practice, relevant discrete relations are used. 

The available methods to solve the considered 
problem are based on the Kalman filter to estimate 
three coordinates and three components of the ve-
locity vector [7]. This reduces the effect of noise 
components on the estimation accuracy, simplifies 
the onboard motion prediction model, provides 
monitoring of GNSS measurements and detecting 
the anomalous measurements. 

Numerical implementation of the algorithm with 
the traditional Kalman filter in onboard computer 
requires considerable computational loads. Further 
we describe a method to decompose the full-size 
sixth-order filter into three parallel second-order 
filters, which significantly reduces the computa-
tional loads with no degradation in the navigation 
accuracy. A similar method has been earlier used 
by the authors for spacecraft attitude determination 
in stellar aiding mode [8].  

In [8], the spacecraft attitude parameters (parame-
ters of its angular motion as a solid body with respect 
to its center of mass) are estimated by the star sensor 
measurements. The star sensor generates the quater-
nion of attitude of its body frame with respect to the 
inertial frame (IF). Here, a similar approach is applied 
to the spacecraft navigation problem, i.e., estimating 
the motion parameters of the center of mass (coordi-
nates and components of the linear velocity vector) by 
GNSS-derived position and velocity. In space flight, 
these tasks are separated. The proposed algorithms 
can also be employed for the free flight navigation of 
upper stages of launch vehicles. 

Note that the numerical implementation of the 
Kalman filter is important both for the reduction of 

computational load and stability of computations. 
Different approaches were suggested to reduce the 
computational burden during the filter implementa-
tion [9, 10]: simplifying the model of the dynamic 
system, reducing the dimensionality of the state 
vector, decomposing the state vector into several 
subvectors with lower dimensionality, sequential 
processing of measurements, using suboptimal fil-
ters. Currently, the Kalman filter U-D square root 
modification is effectively used [11], which is sta-
ble to machine rounding, includes no square root 
extraction or matrix inversion operations, and uses 
sequential scalar measurements updates. This modi-
fication of U-D filter has been implemented in the 
navigation algorithms described below. 

It should be noted that computational loads of 
the Kalman filter nonlinearly depend on its dimen-
sionality: the number of memory cells is propor-
tional to the squared dimensionality of the state 
vector, and the number of addition and multiplica-
tion operations is proportional to the cubed dimen-
sionality. Therefore, using a number of lower di-
mensionality filters, which, however, provide the 
required accuracy – if it is possible in a certain es-
timation problem – will be justified, since it reduces 
the computational load on the onboard computer. 

When designing the decomposed navigation al-
gorithms, we used the techniques for decomposing 
the estimation problems by the measurement vector 
components. For the details of these techniques, the 
reader is referred, for example, to [6]. 

An important aspect of the considered problem 
is the comparative analysis of accuracies of the 
proposed decomposed algorithms and the full-scale 
optimal algorithm. 

The main objective of this paper is to design a de-
composed algorithm for integrated data processing. 

The paper is structured as follows. At first, mecha-
nization equations of the studied problem are provid-
ed. Then, spacecraft navigation problem is stated as a 
problem of aiding (updating) the motion prediction 
results by GNSS measurements. Based on its solution, 
the optimal data fusion algorithm is generated, which 
serves as a model for the data fusion algorithm. Fur-
ther, the model is used to design the decomposed es-
timation algorithms. The results from covariance 
analysis of accuracy of the proposed algorithms and 
the optimal one are provided. Some simulation results 
are given by the example of estimating motion pa-
rameters during free flight. 
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MECHANIZATION EQUATIONS 
OF THE NAVIGATION PROBLEM 

AS A PROBLEM OF ESTIMATING THE STATE 
VECTOR BY GNSS MEASUREMENTS 

 
We formulate the problem of estimating the state 

vector 
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obtained at times 𝑡௞, 𝑘 = 0, 1, 2, … .  

Here, 

        1 2 3

T
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are the spacecraft coordinates in IF; 

        1 2 3

T
v t v t v t v t   

is the spacecraft absolute velocity vector in IF; 

   , , , ,,ζ ζr k k r k v k k v kz r t z v t   
 

are GNSS position and velocity measurements;  
ζ௥,௞, ζ௩,௞ are the random errors of GNSS measure-
ments, being white discrete Gaussian noises with 
the a priori characteristics: 
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Here 𝑀{∙∙∙} is the symbol of mathematical ex-
pectation, I is the identity matrix, δ௜௞ is the Kron-
ecker symbol. 

Let the IF, where aiding GNSS data are provided, 
be defined as follows [12]: the origin is at the Earth’s 
center of mass, axis 𝑧 is directed to the Celestial 
North Pole, axis x lies in the equatorial plane and is 
directed to the vernal equinox, axis y complements 
the system to the right-handed frame. The Celestial 
Pole and the vernal equinox correspond to the stand-
ard epoch 2000.0 (JD2000.0). 

Synchronization of GNSS measurements and 
motion prediction solutions is not covered in the 
paper to avoid abundant technical details, the possi-
ble timing skew is considered to be relatively small.  

Mechanization equations of spacecraft motion are 

    ,r t v t                           (3) 

     .wv t g r q t                     (4) 

Here, g(r) is the vector of gravity force in inertial 
frame, qw(t) are the random disturbances (forces) 
acting on the spacecraft. 

At the considered altitudes of the orbital motion 
(geostationary, high elliptical orbits), the atmos-
pheric drag effect on the spacecraft motion is rela-
tively low, and it can be modeled with the noise 
component of the motion model errors. With this 
assumption, the vector qw(t) is further modeled with 
white noise with a priori known characteristics: 
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The motion equations (3), (4) can be jointly writ-
ten as 

       ,x t f x t q t 
 

where 
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The equations can also be written in matrix form: 
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The model equations of the motion prediction 
implemented in the onboard computer are given by 
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where rʹ(t) are the  inertial coordinates of the space-
craft, vʹ(t) is the vector of spacecraft absolute veloc-
ity in IF, gʹ(rʹ) is the gravity force vector in IF cal-
culated using the known model. 

For definiteness, we shall use the model of the 
central gravitational field. Then we have  
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where μ = 398600.4415∙109 m3/s2 is the Earth’s 
gravitation constant. 

We introduce the motion prediction error vector  
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and the vector of differences between GNSS meas-
urements and model parameters 
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Motion prediction error equations are  
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where G(r) = gij(r) = ∂gi(r) / ∂rj, i, j =1,2,3 is the 
gravity tensor.  

For the central gravitational field model, we have 
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The measurement equations are 
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ESTIMATION PROBLEM:  
OPTIMAL KALMAN FILTER 

 
Formulate the problem of estimating the state 

vector  x(t) by measurements zk in continuous time:  
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To construct the extended Kalman filter, we lin-
earize the dynamic system model in the vicinity of 
the predicted trajectory:  

     δˆx t x t x t  ,
 

where δx(t) is the estimate error vector, 
    x̂ t M x t . 

Then 
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Hence, we get a linear problem of estimating the 

error vector δx(t) by difference aiding measure-
ments zk according to (1), (2): 
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The corresponding linear estimation problem in 
discrete time is given by: 
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where Фk|k–1 is the transition matrix, matrices B, H 
are identical to the similar matrices for continuous 
model, qw,k is the discrete white noise equivalent to 
noise qw with intensity matrix Qk. 

Transition matrixФk|k–1 and the system noise ma-
trix Qk are given by 
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Introduce the following denotations: 

δxk
(–), δxk

(+) are a priori and a posteriori estimates of 
the error vector δxk; 

       Δ δ δ , Δ δ δ  k k k k k kx x x x x x       are a priori 

and a posteriori estimation errors; 
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matrices of a priori and a posteriori estimation er-
rors, respectively. 

The optimal estimation algorithm is described in 
(5) – (13) [10].  

A priori estimates (prediction): 
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(mathematical expectation of a priori estimation 
error is identically equal to zero), 
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A posteriori estimates (measurement update): 
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Initial conditions 
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ESTIMATION PROBLEM: DECOMPOSED 
ALGORITHM 

 
Introduce three error vectors  
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Motion prediction error equations in discrete 
form are given by  
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r r v t

v v g r t u
 

   

 

  
 

where parameters uj,k are 

 
 

1, 1 12, 1 2, 1 13, 1 3, 1

2, 1 12, 1 1, 1 23, 1 3, 1

δ δ Δ ,

δ δ Δ ,

k k k k k

k k k k k

u g r g r t

u g r g r t

    

    

 

 

  3, 1 13, 1, 1 23, 1 2, 1δ δ Δ .k k k k ku g r g r t      

Further in decomposed aiding algorithms, par-
ticularly, at the extrapolation step, uj,k are consid-
ered to be the known inputs generated by the esti-
mates of the relevant decomposed filters: 

    
    
    

1, 1 12, 1 2, 1 13, 1 3, 1

2, 1 12, 1 1, 1 23, 1 3, 1

3, 1 13, 1 1, 1 23, 1 2, 1

δ δ Δ ,

δ δ Δ ,

δ δ Δ .

k k k k k

k k k k k

k k k k k

u g r g r t

u g r g r t

u g r g r t

 
    

 
    

 
    

 

 

 






 

Transition matrices of decomposed filters are  

 
| 1

, 1

1 Δ
Ф , 1, 2, 3.

Δ 1
i

k k
ii k

t
i

g t


 
  
   

Parameter uj,k  is introduced in order to decom-
pose the sixth-order filter into three independent 
second-order filters operating sequentially one after 
another. In each second-order filter, uj,k  is a known 
value that can be treated as a specified input direct-
ly affecting the estimated parameters.  

The decomposed estimation algorithm is de-
scribed with (14) – (43). 

A priori estimates (prediction): 

    1 ,k kx f x 
                         (14) 

      2 3
1, 1 12, 1 1 13, 1 1δ δ Δ ,k k k k ku g x g x t 

            (15) 

      1 3
2, 1 12, 1 1 23, 1 1δ δ Δ ,k k k k ku g x g x t 

            (16) 

      1 2
3, 1 13, 1 1 23, 1 1δ δ Δ ,k k k k ku g x g x t 

            (17) 

  1

1, 1

0
δ ,k

k

x
u





 
  
                       (18) 

  2

2, 1

0
δ ,k

k

x
u





 
  
                       (19) 

  3

3, 1

0
δ ,k

k

x
u





 
  
                       (20) 

           1 1 1 1 1
| 1 1 | 1 ,Ф Ф T

k k k k k k kP P Q 
              (21) 
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           2 2 2 2 2

| 1 1 | 1 ,Ф Ф T
k k k k k k kP P Q 

             (22) 
           3 3 3 3 3

| 1 1 | 1 ,Ф Ф T
k k k k k k kP P Q 

                 (23) 

   

 

11, 14, 22, 25,1 2

14, 44, 25, 55,

33, 36,3

36, 66,

, ,

.

k k k k
k k

k k k k

k k
k

k k

Q Q Q Q
Q Q

Q Q Q Q

Q Q
Q

Q Q

   
    
   

 
  
 

(24) 

A posteriori estimates (measurement update): 

      1 1 1 ,δ k k kz z x                       (25) 
      2 2 2 ,δ k k kz z x                      (26) 
      3 3 3 ,δ k k kz z x                      (27) 

           1
1 1 1 1 ,T T

k k kK P H HP H R
      (28) 

           1
2 2 2 2 ,T T

k k kK P H HP H R
      (29) 

           1
3 3 3 3 ,T T

k k kK P H HP H R
      (30) 

   

 

11, 14, 22, 25,1 2

14, 44, 25, 55,

33, 36,3

36, 66,

, ,

,

k k k k
k k

k k k k

k k
k

k k

R R R R
R R

R R R R

R R
R

R R

   
    
   

 
  
 

(31) 

             1 1 1 1 1δ δ δ δ ,k k k k kx x K z H x         (32) 

             2 2 2 2 2δ δ δ δ ,k k k k kx x K z H x        (33) 

             3 3 3 3 3δ δ δ δ ,k k k k kx x K z H x        (34) 

        1 1 1 ,k k kP I K H P               (35) 

        2 2 2 ,k k kP I K H P              (36) 

        3 3 3 .k k kP I K H P               (37) 

Updating the state vector: 

      1
1, 1, 1,δ ,k k kx x x                    (38) 
      2
2, 2, 1,δ ,k k kx x x                   (39) 
      3
3, 3, 1,δ ,k k kx x x                   (40) 

      1
4, 4, 2, 1, 1,δk k k kx x x u  

              (41) 
      2
5, 5, 2, 2, 1,δk k k kx x x u  

               (42) 
      3
6, 6, 2, 3, 1.δk k k kx x x u  

               (43) 

 
 
 
 

COVARIANCE ACCURACY ANALYSIS 
OF DECOMPOSED ALGORITHM 

 
The composite state vector of the decomposed 

estimator is generated from the estimates of de-
composed filters: 

            1 2 3 1 2 3
6 1 1 1 1 2 2 2 .δ δ δ δ δ δ δ

T

x x x x x x x 
 

Introduce a priori and a posteriori errors of de-
composed algorithm estimates  

       ,Δ δ δ Δ δ δk k k k k kx x x x x x         
 

and relevant covariance matrices  

        
        

Δ ,

Δ ,

Δ Δ ,

Δ Δ .

T
x k k k k

T
x k k k k

P P M x x

P P M x x

   

   

 

 





   

     

The decomposed algorithm differs from the op-
timal one only in the selection of the composite 

gain matrix kK composed of the gain factors gener-

ated by the decomposed filters:  

   

   

   

   

   

   

1 1
11 12

2 2
11 12

3 3
11 12

1 1
21 22

2 2
21 22

3 3
21 22

0 0 0 0

0 0 0 0

0 0 0 0
.

0 0 0 0

0 0 0 0

0 0 0 0

k

k k

k k

k k
K

k k

k k

k k

 
 
 
 
   
 
 
 
 
 

  

Here        
11 12 21 22, , , , 1, 2, 3i i i ik k k k i  are the gains of 

three decomposed second-order filters.  

In the composite decomposed algorithm the pa-
rameters of inputs 𝑢௜,௞ are included in the transition 
matrix Ф௞|௞ିଵ, so it remains unchanged.  

The decomposed algorithm in composite form 
can be described with (44) – (48). 

A priori estimates: 

 δ 0,kx                              (44) 

   
| 1 1 | 1 .Ф ФT

k k k k k k kP P Q 
                   (45) 

A posteriori estimates: 

       ,δ δ δ δ δk k k k k k kx x K z H x K z          (46) 

        ,
T T

k k k k k kP I K H P I K H K RK            (47) 
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   
0 0 0δ 0, .x P P                 (48) 

Introduce a priori and a posteriori relative errors 
of the decomposed algorithm: 

         

         

δ ,

.

Δ Δ δ

Δ Δ δ δ

k k k k k

k k k k k

Dx x x x x

Dx x x x x

    

    

   

   

 
   

They satisfy the equations (49)–(52): 

  0,kDx                           (49) 
       

,

Δ δ

Δ δ Δ δ

k k k k k

k k k k

Dx I K H Dx K H x

K z K z

   

 

 
   (50) 

,Δ k k kK K K                     (51) 
 
0 0.Dx                         (52) 

Introduce the cross covariance matrices for a 
priori and a posteriori errors of the optimal and de-
composed algorithms:  

           
           

   

,

,

,0 ,0

Δ Δ Δ Δ ,

Δ Δ Δ Δ ,

0.

T T
c k k k k k

T T
c k k k k k

c c

P M x x M x x

P M x x M x x

P P

    

    

 

 

 

 

 

 

 

They satisfy the equations (53)–(54): 

   
, | 1 , 1 | 1 ,Ф ФT

c k k k c k k k kP P Q 
                  (53) 

       , , .
T T

c k k c k k k kP I K H P I K H K RK         (54) 

Since it follows from (9) that 

    ,T
k k kK R I K H P H   

we have 

       
, .c k k k kP P I K H P      

Introduce the composite vectors of a priori and a 
posteriori errors 

 
 

 
 

 

 
,

δ δ

k k
k k

k k

Dx Dx
Dy Dy

x x

 
 

 

   
       
     

and their covariance matrices: 

      
 

 
    

   

   

,

, δ,

δ , δδ,

δ
δ

,

T
y k k k

T Tk
k k

k

DD k D k

D k k

P M Dy Dy

Dx
Dx x

x

P P

P P

  


 



 

 

 

 
   
 

 
 
 
 

 

 
,0 0.yP    

Covariance matrices of a priori estimates are 
given by  

   
, | 1 , 1 | 1,Ф ФT

DD k k k DD k k kP P 
                (55) 

      δ, | 1 , 1 1 | 1

0

,Ф  ФT
D k k k c k k k k k kP P P Q Q  

   



   


 

     
δδ, | 1 1 | 1 .Ф ФT

k k k k k k k kP P P Q  
      

Covariance matrices of a posteriori estimates are 

          
             

          

       

, ,

, ,

δ, ,

0

δδ,

0

;

;

.

Δ Δ

Δ Δ

Δ

T T T
DD k k DD k k k k k

TT T
k c k k k k c k k k

D k k c k k k k

k k k k

P I K H P I K H K HP H R K

I K H P P H K K H P P I K H

P I K H P P K HP

P P I K H P

 







   

  



  

     

     

   

  

 

 


 




 

Finally, we have the following equations for a 
posteriori errors: 

       
  

, ,

Δ ,Δ

T

DD k k DD k k

T T
k k k

P I K H P I K H

K HP H R K

 



   

 

 
    (56) 

   
δ, ,ΔD k k kP K HP    

       
δδ, .k k k kP P I K H P      

Equations (55) and (56) describe the time behav-
ior of relative errors of decomposed algorithm as 
compared to the optimal one. Note that they were 
derived with no consideration for the features of the 
certain studied dynamic system, thus they charac-
terize the accuracy degradation of any Kalman type 
algorithm, differing from the Kalman filter by the 
selection of gain matrix, as compared to the optimal 
algorithm. 
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Analysis of computational complexity (number 
of arithmetic operations) of optimal and decom-
posed algorithms demonstrates that software im-
plementation of the decomposed algorithm requires 
about five times less multiplication and division 
operations. 

 
SIMULATION RESULTS 

 
Below we provide some simulation results for the 

decomposed algorithm used to estimate the motion 
parameters of launch vehicle upper stage during the 
free flight (with turned off main engine) 2858 s long. 

When modeling the Earth’s anomalous gravita-
tional field, we accounted for its terms up to the 
eighth order in expansion in spherical harmonics. 
The onboard algorithm model considered only the 

central gravitational field. The following parameters 
of GNSS noise error model were taken: σr = 15 m, σv 
= 0.05 m/s. The GNSS data sampling rate is 1 Hz. 

Figure 1 presents the x-axis GNSS errors, errors 
in coordinates and velocity vector components for 
the decomposed algorithm with RMS errors. 

Figure 2 presents the differences between the er-
rors in x-axis coordinates and component of the ve-
locity vector for the decomposed and optimal algo-
rithms and their RMS errors computed using (55), 
(56). The error variations are due to the upper stage 
rotations about the Earth during the free flight. The 
curves reveal accuracy degradation as compared to 
the optimal algorithm of the order of 1 mm (0.07 
%) in coordinates and 102 mm/s (0.02 %) in veloc-
ity vector components, which is negligibly small. 

 
Fig. 1. Errors in x-axis coordinates and x-component of the velocity vector by GNSS data (blue lines, erASN(X), erASN(VX)) and by the de-
composed algorithm (black lines, erDF(X), erDF(VX)) and RMS errors (± 1 RMS, sigma(X), sigma(VX)). 

 

 
Fig. 2. Differences in errors in x-axis coordinates and x-component of the velocity vector for the decomposed and optimal algorithms (black 
lines deltaX, deltaVX) and their RMS errors (green lines std(deltaX), std(deltaVX)). 

CONCLUSIONS 
 

The paper focuses on the fusion of GNSS data 
and onboard motion prediction data for estimating 
the motion parameters of spacecraft or upper stage 

during the free flight. A method of decomposing 
the optimal sixth-order Kalman filter into three sec-
ond-order filters has been proposed, which consid-
erably reduces the algorithm computational com-
plexity. 
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Formulas describing the time behavior of covari-
ance matrices of relative errors for the decomposed 
algorithm as compared to the optimal one have 
been obtained. These formulas are true for a Kal-
man type algorithm differing from the Kalman filter 
by the selection of the gain matrix.  

Covariance accuracy analysis of the decomposed 
algorithm as compared to the optimal estimator 
demonstrates that the loss in accuracy has an order 
of several mm in coordinates and several hundredth 
fractions of mm/s in velocity vector components 
(hundredth of percent). i.e., are negligibly small as 
compared to typical GNSS errors. These results 
prove the consistency of the proposed approach. 

The algorithm is being implemented in the 
onboard software of advanced space systems. 
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